37. On the Zeros of an Entire Function which is Periodic mod a Non-Constant Entire Function of Order Less than One

By Hironobu URABE*) and Chung-Chun YANG**)

(Communicated by Kôsaku YOSIDA, M. J. A., June 15, 1978)

In this paper, we will consider the entire function which is periodic mod a non-constant entire function of order less than one, and state two theorems, one of which shows as a special case that periodic entire functions are uniquely determined by the sets of their fixed points (Corollary 2). The detailed proofs of these results will appear elsewhere [6].

1. For a non-zero constant b, we denote by G(b) the class of entire functions of the form:

$$f(z) = h(z) + H(z),$$

where H(z) (\equiv const.) is entire, periodic with period b, i.e., $H(z+b) \equiv H(z)$, and h(z) is a non-constant entire function of order less than one. Especially when h(z) is a polynomial of degree one, the above class is denoted by J(b). A function f(z) in G(b) (or J(b)) is said to be periodic (with period b) mod h(z).

These classes possess a significant position in factorization theory of transcendental entire functions (cf. [1], [2], and [5]).

2. Statement of our results. Theorem 1. Let $f(z)=c_1z+H(z)$ and $g(z)=c_2z+K(z)$ belong to the class J(b) (H(z) and K(z) have period b, and c_1, c_2 are non-zero constants). Assume that the sets of the zeros of f(z) and g(z) are identical except (at most) a set whose exponent of convergence is less than one, then we have that $f(z)\equiv c \cdot g(z)$ and hence $H(z)\equiv c \cdot K(z)$ with $c=c_1/c_2$.

Corollary 1. Let H(z) and K(z) be two periodic entire functions with the same non-zero period. Assume that the sets of the fixed points of H(z) and K(z) are identical except (at most) a set whose exponent of convergence is less than one, then H(z) and K(z) are identically equal.

Theorem 2. Let $f_j(z) \in G(b_j)$ (j=1,2). Assume that the sets of the zeros of $f_j(z)$ are identical for j=1,2, including multiplicities. Then we have that $f_1(z) \equiv c \cdot f_2(z)$ for some non-zero constant c and hence b_1/b_2 is a rational number.

^{*)} Kyoto Univ. of Education, Fushimi-ku, Kyoto 612.

^{**)} Naval Research Laboratory, Washington, D.C. 20375.

Corollary 2. Let $H_j(z)$ (j=1,2) be non-constant periodic entire functions with period $b_j \neq 0$. Assume that the sets of the fixed points of $H_j(z)$ are identical, including multiplicities. Then we must have that $H_1(z)$ and $H_2(z)$ are identically equal and b_1/b_2 is a rational number.

3. For the proofs of the above results, we shall need the following lemma (unicity theorem of Borel type) due to K. Niino and M. Ozawa.

Lemma (cf. [4]). Let $G_j(z)$ $(1 \le j \le n)$ be transcendental entire functions and c_j be non-zero constants, and let g(z) $(\not\equiv 0)$ be an entire function such that $T(r, g) = o(T(r, G_j))$ as r tends to infinity for any j. Assume that there exists an identical relation

$$\sum_{j=1}^n c_j G_j(z) = g(z),$$

then we must have

$$\sum_{j=1}^n \delta(0,G_j) \leq n-1.$$

Here T(r, *) and $\delta(a, *)$ denote the Nevanlinna's characteristic function and deficiency, respectively.

4. Outline of the proof of Theorem 2. Let $f_1(z) = h(z) + H_1(z)$ and $f_2(z) = k(z) + H_2(z)$, where $H_j(z)$ is entire, non-constant, with $H_j(z+b_j) = H_j(z)$ (j=1,2), h(z) and k(z) are non-constant entire functions of order less than one. By the assumption, there exists an identical relation such as

(*) $h(z) + H_1(z) = (k(z) + H_2(z))e^{p(z)}$, where p(z) is an entire function.

Now it is possible to show that p(z) would be constant if and only if b_1/b_2 is a rational number.

Owing to this fact, it is sufficient to prove that the identity (*) does not hold under the additional assumption that b_1/b_2 is not a rational number and p(z) is non-constant. From this assumption, one can show that $p(z+mb_j)-p(z)$ is non-constant for any non-zero integer m(j=1,2).

Then by cancelling $H_1(z)$ and $H_2(z)$ from the identity (*), we shall obtain the following new identity.

$$(**) \begin{array}{c} (r_{2}-r_{1})+(r_{1}-r)e^{p-p_{2}-q+q_{2}}+(h_{2}-h_{1})e^{p-p_{1}-p_{2}-q+q_{1}+q_{2}}\\ -(r_{2}-r)e^{p-p_{1}-q+q_{1}}-(h_{2}-h)e^{-p_{2}+q_{2}}+(h_{1}-h)e^{-p_{1}+q_{1}}\\ +(s-k)e^{p-p_{2}+q_{2}}-(s-k)e^{p-p_{1}+q_{1}}+(s_{2}-k_{2})e^{p-p_{1}-q+q_{1}+q_{2}}\\ -(s-k)e^{p-p_{2}-q+q_{1}+q_{2}}-(s_{2}-k_{2})e^{q_{2}}+(s_{1}-k_{1})e^{q_{1}}=0, \end{array}$$

where $p_j(z) = p(z+jb_1)$, $q(z) = p(z+b_2)$, $q_j(z) = q(z+jb_1) = p(z+jb_1+b_2)$, $h_j(z) = h(z+jb_1)$, $r(z) = h(z+b_2)$, $r_j(z) = r(z+jb_1)$, $k_j(z) = k(z+jb_1)$, $s(z) = k(z+b_2)$ and $s_j(z) = s(z+jb_1)$ for j=1, 2.

Now the coefficients of exponential functions in (**) such as $r_2 - r_1$, $r_1 - r$, $h_2 - h_1$, etc. are all of order less than one, and the function $r_2 - r_1$

is not identically zero, since r(z) is a non-constant entire function of order less than one and $r_2-r_1=r(z+2b_1)-r(z+b_1)$. And further the functions $-p_2+q_2$, $-p_1+q_1$, q_2 and q_1 are non-constant. Now we can prove, by using the lemma repeatedly, that the following seven functions

$$p - p_2 - q + q_2, \ p - p_1 - p_2 - q + q_1 + q_2, \ p - p_1 - q + q_1, \ p - p_2 + q_2, \ p - p_1 + q_1, \ p - p_1 - q + q_1 + q_2 \ ext{and} \ p - p_2 - q + q_1 + q_2$$

are all non-constant (cf. [6]). Then Lemma implies that the identity (**) cannot hold, a contradiction. Hence the assertion of Theorem 2 follows.

References

- Baker, I. N., and Gross, F.: Further results on factorization of entire functions. Proc. Symp. Pure Math., Amer. Math. Soc. Providence R. I., vol. 11, pp. 30-35 (1968).
- [2] Gross, F.: On factorization of meromorphic functions. Trans. Amer. Math. Soc., 131, 215-222 (1968).
- [3] Nevanlinna, R.: Le Théorème de Picard-Borel et la Théorie des Fonctions Méromorphes. Gauthier Villars, Paris (1929).
- [4] Niino, K., and Ozawa, M.: Deficiencies of an entire algebroid function. Kodai Math. Sem. Rep., 22, 98-113 (1970).
- [5] Urabe, H.: Uniqueness of the factorization under composition of certain entire functions. J. Math. Kyoto Univ., 18(1), 95-120 (1978).
- [6] Urabe, H., and Yang, C.-C.: On a characteristic property of periodic entire functions (to appear).