37. On the Zeros of an Entire Function which is Periodic mod a Non-Constant Entire Function of Order Less than One

By Hironobu Urabe*) and Chung-Chun Yang**)
(Communicated by Kôsaku Yosida, M. J. A., June 15, 1978)

In this paper, we will consider the entire function which is periodic mod a non-constant entire function of order less than one, and state two theorems, one of which shows as a special case that periodic entire functions are uniquely determined by the sets of their fixed points (Corollary 2). The detailed proofs of these results will appear elsewhere [6].

1. For a non-zero constant b, we denote by $\boldsymbol{G}(b)$ the class of entire functions of the form :

$$
f(z)=h(z)+H(z),
$$

where $H(z)$ ($\not \equiv$ const.) is entire, periodic with period b, i.e., $H(z+b) \equiv$ $H(z)$, and $h(z)$ is a non-constant entire function of order less than one. Especially when $h(z)$ is a polynomial of degree one, the above class is denoted by $\boldsymbol{J}(b)$. A function $f(z)$ in $\boldsymbol{G}(b)$ (or $\boldsymbol{J}(b)$) is said to be periodic (with period b) mod $h(z)$.

These classes possess a significant position in factorization theory of transcendental entire functions (cf. [1], [2], and [5]).
2. Statement of our results. Theorem 1. Let $f(z)=c_{1} z+H(z)$ and $g(z)=c_{2} z+K(z)$ belong to the class $J(b)(H(z)$ and $K(z)$ have period b, and c_{1}, c_{2} are non-zero constants). Assume that the sets of the zeros of $f(z)$ and $g(z)$ are identical except (at most) a set whose exponent of convergence is less than one, then we have that $f(z) \equiv c \cdot g(z)$ and hence $H(z) \equiv c \cdot K(z)$ with $c=c_{1} / c_{2}$.

Corollary 1. Let $H(z)$ and $K(z)$ be two periodic entire functions with the same non-zero period. Assume that the sets of the fixed points of $H(z)$ and $K(z)$ are identical except (at most) a set whose exponent of convergence is less than one, then $H(z)$ and $K(z)$ are identically equal.

Theorem 2. Let $f_{j}(z) \in \boldsymbol{G}\left(b_{j}\right)(j=1,2)$. Assume that the sets of the zeros of $f_{j}(z)$ are identical for $j=1,2$, including multiplicities. Then we have that $f_{1}(z) \equiv c \cdot f_{2}(z)$ for some non-zero constant c and hence b_{1} / b_{2} is a rational number.

[^0]Corollary 2. Let $H_{j}(z)(j=1,2)$ be non-constant periodic entire functions with period $b_{j} \neq 0$. Assume that the sets of the fixed points of $H_{j}(z)$ are identical, including multiplicities. Then we must have that $H_{1}(z)$ and $H_{2}(z)$ are identically equal and b_{1} / b_{2} is a rational number.
3. For the proofs of the above results, we shall need the following lemma (unicity theorem of Borel type) due to K. Niino and M. Ozawa.

Lemma (cf. [4]). Let $G_{j}(z)(1 \leqq j \leqq n)$ be transcendental entire functions and c_{j} be non-zero constants, and let $g(z)(\not \equiv 0)$ be an entire function such that $T(r, g)=o\left(T\left(r, G_{j}\right)\right)$ as tends to infinity for any j. Assume that there exists an identical relation

$$
\sum_{j=1}^{n} c_{j} G_{j}(z)=g(z)
$$

then we must have

$$
\sum_{j=1}^{n} \delta\left(0, G_{j}\right) \leqq n-1 .
$$

Here $T(r, *)$ and $\delta(a, *)$ denote the Nevanlinna's characteristic function and deficiency, respectively.
4. Outline of the proof of Theorem 2. Let $f_{1}(z)=h(z)+H_{1}(z)$ and $f_{2}(z)=k(z)+H_{2}(z)$, where $H_{j}(z)$ is entire, non-constant, with $H_{j}\left(z+b_{j}\right)=H_{j}(z)(j=1,2), h(z)$ and $k(z)$ are non-constant entire functions of order less than one. By the assumption, there exists an identical relation such as
(*)

$$
h(z)+H_{1}(z)=\left(k(z)+H_{2}(z)\right) e^{p(z)},
$$

where $p(z)$ is an entire function.
Now it is possible to show that $p(z)$ would be constant if and only if b_{1} / b_{2} is a rational number.

Owing to this fact, it is sufficient to prove that the identity (*) does not hold under the additional assumption that b_{1} / b_{2} is not a rational number and $p(z)$ is non-constant. From this assumption, one can show that $p\left(z+m b_{j}\right)-p(z)$ is non-constant for any non-zero integer m ($j=1,2$).

Then by cancelling $H_{1}(z)$ and $H_{2}(z)$ from the identity (*), we shall obtain the following new identity.

$$
\begin{align*}
& \left(r_{2}-r_{1}\right)+\left(r_{1}-r\right) e^{p-p_{2}-q+q_{2}}+\left(h_{2}-h_{1}\right) e^{p-p_{1}-p_{2}-q+q_{1}+q_{2}} \\
& \quad-\left(r_{2}-r\right) e^{p-p_{1}-q+q_{1}}-\left(h_{2}-h\right) e^{-p_{2}+q_{2}}+\left(h_{1}-h\right) e^{-p_{1}+q_{1}} \tag{**}\\
& \quad+(s-k) e^{p-p_{2}+q_{2}}-(s-k) e^{p-p_{1}+q_{1}}+\left(s_{2}-k_{2}\right) e^{p-p_{1}-q+q_{1}+q_{2}} \\
& \quad-(s-k) e^{p-p_{2}-q+q_{1}+q_{2}}-\left(s_{2}-k_{2}\right) e^{q_{2}}+\left(s_{1}-k_{1}\right) e^{q_{1}}=0,
\end{align*}
$$

where $p_{j}(z)=p\left(z+j b_{1}\right), q(z)=p\left(z+b_{2}\right), \quad q_{j}(z)=q\left(z+j b_{1}\right)=p\left(z+j b_{1}+b_{2}\right)$, $h_{j}(z)=h\left(z+j b_{1}\right), r(z)=h\left(z+b_{2}\right), r_{j}(z)=r\left(z+j b_{1}\right), k_{j}(z)=k\left(z+j b_{1}\right), s(z)=$ $k\left(z+b_{2}\right)$ and $s_{j}(z)=s\left(z+j b_{1}\right)$ for $j=1,2$.

Now the coefficients of exponential functions in ($* *$) such as $r_{2}-r_{1}$, $r_{1}-r, h_{2}-h_{1}$, etc. are all of order less than one, and the function $r_{2}-r_{1}$
is not identically zero, since $r(z)$ is a non-constant entire function of order less than one and $r_{2}-r_{1}=r\left(z+2 b_{1}\right)-r\left(z+b_{1}\right)$. And further the functions $-p_{2}+q_{2},-p_{1}+q_{1}, q_{2}$ and q_{1} are non-constant. Now we can prove, by using the lemma repeatedly, that the following seven functions

$$
\begin{aligned}
& p-p_{2}-q+q_{2}, p-p_{1}-p_{2}-q+q_{1}+q_{2}, p-p_{1}-q+q_{1} \\
& p-p_{2}+q_{2}, p-p_{1}+q_{1}, p-p_{1}-q+q_{1}+q_{2} \text { and } \\
& p-p_{2}-q+q_{1}+q_{2}
\end{aligned}
$$

are all non-constant (cf. [6]). Then Lemma implies that the identity (**) cannot hold, a contradiction. Hence the assertion of Theorem 2 follows.

References

[1] Baker, I. N., and Gross, F.: Further results on factorization of entire functions. Proc. Symp. Pure Math., Amer. Math. Soc. Providence R. I., vol. 11, pp. 30-35 (1968).
[2] Gross, F.: On factorization of meromorphic functions. Trans. Amer. Math. Soc., 131, 215-222 (1968).
[3] Nevanlinna, R.: Le Théorème de Picard-Borel et la Théorie des Fonctions Méromorphes. Gauthier Villars, Paris (1929).
[4] Niino, K., and Ozawa, M.: Deficiencies of an entire algebroid function. Kodai Math. Sem. Rep., 22, 98-113 (1970).
[5] Urabe, H.: Uniqueness of the factorization under composition of certain entire functions. J. Math. Kyoto Univ., 18(1), 95-120 (1978).
[6] Urabe, H., and Yang, C.-C.: On a characteristic property of periodic entire functions (to appear).

[^0]: *) Kyoto Univ. of Education, Fushimi-ku, Kyoto 612.
 **) Naval Research Laboratory, Washington, D.C. 20375.

