54. Hyperbolic Nonwandering Sets without Dense Periodic Points

By Masahiro Kurata
Department of Mathematics, Hokkaido University

(Communicated by Kôsaku YosidA, m. J. A., Sept. 12, 1978)

Let $f: M \rightarrow M$ be a C^{∞} diffeomorphism of a closed C^{∞} manifold M, and let $\Omega(f)$ be the nonwandering set of $f . \Omega(f)$ is hyperbolic if $\Omega(f)$ is compact and the restriction $T_{a_{(f)}} M$ of the tangent bundle $T M$ of M on $\Omega(f)$ splits into the Whitney sum of $T f$-invariant subbundles

$$
T_{\Omega(f)} M=E^{s} \oplus E^{u}
$$

such that given a Riemannian metric on $T M$ there are positive numbers c and $\lambda<1$ such that $\left|T f^{n} v\right|<c \lambda^{n}|v|$, for $v \in E^{s}$ and $n>0$, and $\left|T f^{-n} v\right|$ $<c \lambda^{n}|v|$, for $v \in E^{u}$ and $n>0$. The following problem was suggested in [3].

Problem. If a nonwandering set $\Omega(f)$ is hyperbolic, are the periodic points dense in $\Omega(f)$?

Newhouse and Palis proved that the answer is affirmative when M is a two dimensional closed manifold ([1] and [2]).

In this paper we give the following
Theorem. Suppose $\operatorname{dim} M \geq 4$. Then there is a diffeomorphism $F: M \rightarrow M$ such that the nonwandering set $\Omega(F)$ is hyperbolic but its periodic points are not dense in $\Omega(F)$.

Construction. To simplify the construction, we assume $\operatorname{dim} M$ $=4$.

1. Denote $D=[-2,6] \times[-1,3] \subset R^{2}$. Let an embedding $f: D$ $\rightarrow D$ satisfy the followings (Fig. 1). Suppose that real numbers a_{-1}, \cdots, a_{8} satisfy
(1.1) $\quad a_{-1}=-2<-1<a_{0}=-a_{1}<0<a_{1}<1<a_{2}<a_{3}<a_{4}<4<a_{5}<5$
$<a_{6}=6$, and the rectangle $A_{i}(i=0, \cdots, 6)$ is given by

$$
A_{i}=\left\{(x, y) \in D \mid a_{i-1} \leq x \leq a_{i}\right\}
$$

Then f satisfies (1.2)-(1.5).
(1.2) $f\left|A_{0}, f\right| A_{2}$ and $f \mid A_{6}$ are contractions with three sinks $(-1,0),(1,0)$ and $(5,2)$,
(1.3) $f\left(A_{4}\right) \subset$ int A_{0},
(1.4) $f \mid A_{i}: A_{i} \rightarrow f\left(A_{i}\right)(i=1,3,5)$ maps A_{i} linearly onto a rectangle $f\left(A_{i}\right)$, expanding horizontally and contracting vertically. There are two hyperbolic fixed points, $(0,0)$ and $(4,2)$.
(1.5) There are numbers $\alpha>1$ and $0<\beta<1$ such that

Fig. 1

$$
f(x, y)=\left\{\begin{array}{ll}
(\alpha x, \beta y) & \text { for }(x, y) \in A_{1} \\
(\alpha(x-4)+4, \beta(y-2)+2)
\end{array} \quad \text { for }(x, y) \in A_{5} .\right.
$$

2. Let $D^{\prime} \subset R^{2}$ satisfy the followings (Fig. 2). D^{\prime} is a neighbourhood of $(\{0\} \times[-1,1]) \cup([-2,0] \times\{0\})$ which is diffeomorphic to a 2 dimensional disk, and there is a sufficiently small positive number ε

Fig. 2
such that

$$
\left\{(x, y) \in D^{\prime}| | y+1 \mid \leq \varepsilon\right\}=[-\varepsilon, \varepsilon] \times[-1-\varepsilon,-1+\varepsilon]
$$

and

$$
\left\{(x, y) \in D^{\prime}| | x+1 \mid \leq \varepsilon\right\}=[-1-\varepsilon,-1+\varepsilon] \times[-\varepsilon, \varepsilon] \text {. }
$$

Let an embedding $g: D^{\prime} \rightarrow D^{\prime}$ satisfy (2.1)-(2.9).
(2.1) $g\left(D^{\prime}\right) \subset \operatorname{int} D^{\prime}$,
(2.2) g is isotopic to the identity,
(2.3) $\bigcap_{n>0} g^{n}\left(D^{\prime}\right)=(\{0\} \times[-1,1]) \cup([-2,0] \times\{0\})$,
(2.4) There are five fixed points: three sinks $(-2,0),(0,1)$, $(0,-1)$, and two saddle points $(0,0),(-1,0)$.
(2.5) $\quad W^{u}((0,0))=\{0\} \times(-1,1)$,
(2.6) $\quad W^{u}((-1,0))=(-2,0) \times\{0\}$,
(2.7) $W^{s}((0,0)) \cap D^{\prime}=\left\{(x, 0) \in D^{\prime} \mid x \geq-1\right\}$,
where $W^{s}(p)$ (resp. $W^{u}(p)$) is the stable (resp. unstable) manifold through p. $(-1,1)$ and $(-2,0)$ denote open intervals.
(2.8) $\quad g(x, y)=\left(\frac{1}{2} x, \frac{1}{2}(y+1)-1\right)$ if $|y+1| \leq \varepsilon$,
(2.9) $\quad g(x, y)=\left(2(x+1)-1, \frac{1}{2} y\right)$ if $|x+1| \leq \varepsilon$.
3. Define

$$
N=D \times D^{\prime} \bigcup_{\psi} D^{3}(\delta) \times[0,1]
$$

where

$$
D^{3}(\delta)=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in R^{3} \mid \sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}} \leq \delta\right\}
$$

and

$$
0<\delta<\frac{1}{4} \varepsilon .
$$

The attaching map

$$
\psi: D^{3}(\delta) \times([0, \varepsilon] \cup[1-\varepsilon, 1]) \rightarrow D \times D^{\prime}
$$

is given by

$$
\psi\left(y_{1}, y_{2}, y_{3}, t\right)=\left\{\begin{array}{l}
\left(y_{1}, y_{2}, t, y_{3}-1\right) \text { if } 0 \leq t \leq \varepsilon \\
\left(y_{1}+4, y_{2}+2, y_{3}-1,1-t\right) \text { if } 1-\varepsilon \leq t \leq 1
\end{array}\right.
$$

(Fig. 3).
In §§4-10, we will construct an embedding $F: N \rightarrow N$. After this, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ (resp. $\left(y_{1}, y_{2}, y_{3}, t\right)$) denotes a point of $D \times D^{\prime} \subset N$ (resp. $\left.D^{3}(\delta) \times[0,1] \subset N\right)$.
4. For $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime}$ with $\left|x_{3}+1\right| \geq \varepsilon$ and $\left|x_{4}+1\right| \geq \varepsilon$, define
(4.1) $\quad F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(f\left(x_{1}, x_{2}\right), g\left(x_{3}, x_{4}\right)\right)$.
5. For $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime}$ with $\frac{1}{4} \varepsilon \leq\left|x_{4}+1\right| \leq \varepsilon$, define
(5.1) $\quad F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(f_{\left|x_{4}+1\right|}\left(x_{1}, x_{2}\right), g\left(x_{3}, x_{4}\right)\right)$, where $f_{t}: D \rightarrow D$ ($0 \leq t \leq \varepsilon$) is an isotopy satisfying (5.2)-(5.6). Suppose that positive numbers b_{1}, \cdots, b_{4} satisfy

Fig. 3
(5.2) $0<b_{1}<b_{2}<\delta<b_{3}<b_{4}<a_{1}, \quad \alpha b_{1}<b_{2}$,
and

$$
b_{4}<\min \left\{4-a_{4}, a_{5}-4\right\} .
$$

Then
(5.3) $\quad f_{t}\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right) \quad$ if $\left|x_{1}\right|<b_{1} \quad$ or $\quad\left|x_{1}\right|>b_{4}$,
(5.4) $f_{t}=f$ for $\frac{1}{2} \varepsilon \leq t \leq \varepsilon$,
(5.5) $f_{t}=f_{0}$ for $0 \leq t \leq \frac{1}{4} \varepsilon$,
and
(5.6) $\quad f_{t}\left(x_{1}, x_{2}\right)=\left(\bar{f}_{t}\left(x_{1}\right), \beta x_{2}\right)$ for $\left|x_{1}\right| \leq b_{4}$,
where \bar{f}_{t} is an isotopy of a neighbourhood of 0 in R^{1} and \bar{f}_{0} has five fixed points: three sources $0, \pm b_{3}$, and two sinks $\pm b_{2}$.
6. For $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime}$ with $\left|x_{4}+1\right|<\frac{1}{4} \varepsilon, F$ is defined as follows. Let
(6.1) $U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime} \mid \sqrt{x_{1}^{2}+x_{2}^{2}+\left(x_{4}+1\right)^{2}} \leq \delta\right\}$, and
(6.2) $U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime} \mid \sqrt{x_{1}^{2}+x_{2}^{2}+\left(x_{4}+1\right)^{2}} \leq \delta_{1}\right\}$, where $b_{2}<\delta_{1}<\delta$.
Then F is defined as follows.
(6.3) $\quad F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(f_{0}\left(x_{1}, x_{2}\right), g\left(x_{3}, x_{4}\right)\right)$ if $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime}$ $-U$ and $\left|x_{4}+1\right|<\frac{1}{4} \varepsilon$,

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(f_{0}\left(x_{1}, x_{2}\right), \bar{g}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \frac{1}{2}\left(x_{4}+1\right)-1\right) \tag{6.4}
\end{equation*}
$$

if $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in U \cap F^{-1}(U)$,
where \bar{g} satisfies (6.5)-(6.7).
(6.5) $\bar{g}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{2} x_{3}$ near the frontier of U,
(6.6) $\bar{g}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{3}$ if $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in U_{1}$ and $-\frac{1}{4} \varepsilon \leq x_{3} \leq \frac{1}{2} \varepsilon$, and
(6.7) $\bar{g}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ does not depend on x_{1} if $\left|x_{1}\right|<b_{1}$.
(6.8) $F\left(\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in U \mid x_{3}<0\right\}\right) \subset\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in U \mid x_{3}<0\right\}$.

In $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in U \mid x_{3}<0\right\}$ there are only a finite number of nonwandering points, which are hyperbolic fixed points. Furthermore F satisfies the conditions in § 10 .
7. On $D^{3}(\delta) \times[0,1-\varepsilon], F$ is given as follows
(7.1) $F\left(y_{1}, y_{2}, y_{3}, t\right)=\left(f_{0}\left(y_{1}, y_{2}\right), \frac{1}{2} y_{3}, \phi\left(y_{1}, y_{2}, y_{3}, t\right)\right) \in D^{3}(\delta) \times[0,1]$, where ϕ satisfies the followings.

If $\sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}<\delta_{1} \quad$ or $\quad \frac{1}{2}<t$,
(7.2) $\quad \phi\left(y_{1}, y_{2}, y_{3}, t\right)$ depends only on t and
(7.3) $\quad \frac{\partial \phi}{\partial t}>0$.
(7.4) $\phi\left(y_{1}, y_{2}, y_{3}, t\right)=1-\frac{1}{2}(1-t)$ for $1-2 \varepsilon \leq t \leq 1-\varepsilon$.
(7.5) $\phi\left(y_{1}, y_{2}, y_{3}, t\right)=\bar{g}\left(y_{1}, y_{2}, t, y_{3}-1\right)$ if $0 \leq t \leq \varepsilon$.

Moreover F satisfies § 10 .
8. For $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime} \quad$ with $\left|x_{3}+1\right|<\frac{1}{4} \varepsilon$,
F is given as follows. Let $h_{t}: D \rightarrow D(0 \leq t \leq \varepsilon)$ be an isotopy such that
(8.1) $h_{t}=f$ if $\frac{1}{2} \varepsilon \leq t \leq \varepsilon$,
(8.2) $h_{t}\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right)$ if $-2 \leq x_{1} \leq 4-b_{4}$ or $4+b_{4} \leq x_{1} \leq 6$, and
(8.3) $h_{t}\left(x_{1}, x_{2}\right)=f\left(x_{1}-4, x_{2}-2\right)+(4,2)$ if $\left|x_{1}-4\right|<b_{4}$.

Then
(8.4) $\quad F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(h_{0}\left(x_{1}, x_{2}\right), \bar{h}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \frac{1}{2} x_{4}\right)$,
where \bar{h} satisfies the followings.
(8.5) $\bar{h}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{2}\left(x_{3}+1\right)-1$ if $\sqrt{\left(x_{1}-4\right)^{2}+\left(x_{2}-2\right)^{2}+\left(x_{3}+1\right)^{2}}$ $\leq \delta$ and $x_{4}>\frac{2}{3} \varepsilon$,
(8.6) $\bar{h}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2\left(x_{3}+1\right)-1$ if $\sqrt{\left(x_{1}-4\right)^{2}+\left(x_{2}-2\right)^{2}+\left(x_{3}+1\right)^{2}}$
$\geq \delta_{2}$ or $x_{4}<\frac{1}{3} \varepsilon$,
where $\delta<\delta_{2}<\frac{1}{4} \varepsilon$.
(8.7) $\bar{h}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ does not depend on x_{1} if $\left|x_{1}-4\right|<b_{1}$.

Furthermore F satisfies $\S 10$.
9. For $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in D \times D^{\prime}$ with $\frac{1}{4} \varepsilon \leq\left|x_{3}+1\right|<\varepsilon$, define
(9.1) $\quad F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(h_{\left|x_{3}+1\right|}\left(x_{1}, x_{2}\right), 2\left(x_{3}+1\right)-1, \frac{1}{2} x_{4}\right)$.
10. F is an embedding of N such that
(10.1) $F(N) \subset \operatorname{int} N$,
and
(10.2) F is isotopic to the identity.
11. Straightening the corner (and modifying F near the corner), we can regard N as a submanifold of M which is diffeomorphic to $D^{3} \times S^{1}$. Extend F to a diffeomorphism of M such that the nonwandering sets of F in $M-N$ consists of a finite number of hyperbolic fixed points.
12. The nonwandering set of F consists of a finite number of hyperbolic fixed points and two non-periodic orbits $\left\{\left(x_{1}, x_{2}, 0,0\right)\right.$ $\in D \times D^{\prime} \mid\left(x_{1}, x_{2}\right)$ satisfies (12. $\left.\left.i\right)\right\}(i=1,2)$, where
(12.1) there is an integer n_{0} such that

$$
\begin{array}{ll}
f^{n}\left(x_{1}, x_{2}\right) \in A_{5} & \text { if } n<n_{0}, \\
f^{n}\left(x_{1}, x_{2}\right) \in A_{3} & \text { if } n=n_{0}, \\
f_{n}\left(x_{1}, x_{2}\right) \in A_{1} & \text { if } n>n_{0},
\end{array}
$$

and
(12.2) there is an integer n_{0} such that

$$
\begin{array}{ll}
f^{n}\left(x_{1}, x_{2}\right) \in A_{5} & \text { if } n<n_{0} \\
f^{n}\left(x_{1}, x_{2}\right) \in A_{1} & \text { if } n \geq n_{0} .
\end{array}
$$

The details will be published elsewhere.

References

[1] S. Newhouse and J. Palis: Hyperbolic nonwandering sets on two-dimensional manifolds. Dynamical Systems (M. M. Peixoto ed.), Academic Press (1973).
[2] J. Palis and C. C. Pugh: Fifty problems in dynamical systems. Dynamical Systems-Warwick 1974 (A. Manning ed.), Lectures Notes in Math., no. 468, Springer-Verlag (1975).
[3] S. Smale: Differentiable dynamical systems. Bull. Amer. Math. Soc., 73, 747-817 (1967).

