50. Meromorphic Functions on Compact **Riemann Surfaces**

By Makoto NAMBA*) Tohoku University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1978)

1. By a complex space, we mean a reduced, Hausdorff, complex analytic space. Let V be a compact Riemann surface of genus g. The set Hol (V, P^1) of all holomorphic maps of V into the complex projective line P^1 is nothing but the set of all meromorphic functions on V. A general theorem of Douady [1] says that $Hol(V, P^1)$ is a complex space. Hol (V, P^1) is divided into the open (and closed) subspaces:

 $\operatorname{Hol}(V, P^{1}) = \operatorname{Const} \cup R_{1}(V) \cup R_{2}(V) \cup \cdots,$

where Const is the set of all constant functions and $R_n(V)$ is the set of all meromorphic functions on V of (mapping) order n. Note that $R_n(V)$ is non-empty for $n \ge g+1$. Moreover, if $n \ge g$, then $R_n(V)$ is non-singular and of dimension 2n+1-g (see [3, Proposition 5]). The automorphism group Aut (P^1) of P^1 acts freely and properly on $R_n(V)$ (see [3]). Hence the quotient space $R_n(V)/\operatorname{Aut}(P^1)$ is a complex space and the projection $R_n(V) \rightarrow R_n(V) / \operatorname{Aut}(P^1)$ is a principal Aut (P^1) -bundle (see Holmann [2]).

It is a difficult problem to determine the integers $n \leq g$ with nonempty $R_n(V)$ and to determine the structure of $R_n(V)$ for such n. In this note, we state the following theorems. Details will be published elsewhere.

Theorem 1. Let V = C be a non-singular plane curve of degree $d \geq 2$. Then

$$Min \{n > 0 | R_n(C) \text{ is non-empty} \} = d-1.$$

If $d \geq 3$, then $R_{d-1}(C) / \operatorname{Aut}(P^1)$ is biholomorphic to C.

Theorem 2. Let V be a compact Riemann surface of genus g. Let m and n be positive integers such that (1) m and n are relatively prime, (2) $(m-1)(n-1) \leq g-1$. Then, at least one of $R_m(V)$ and $R_n(V)$ is empty.

Corollary. Let V be a compact Riemann surface of genus g. Let p be a prime number such that $R_{n}(V)$ is non-empty and let n be a positive integer such that $(p-1)(n-1) \leq g-1$. Then,

 $R_n(V) \begin{cases} is \ empty, \ if \ n \not\equiv 0 \pmod{p} \\ \cong R_{n/p}(\boldsymbol{P}^1), \ if \ n \equiv 0 \pmod{p}. \end{cases}$

Supported by Alexander von-Humboldt Foundation.

2. For $g \ge 2$, let T_g be the Teichmüller space of compact Riemann surfaces of genus g. For a point $t \in T_g$, let V_t be the compact Riemann surface corresponding to t. For $n \ge 2$, we put

 $R_n = \bigcup_{t \in T_g} R_n(V_t)$ (disjoint union).

Theorem 3. R_n is a non-singular complex space of dimension 2n+2g-2.

Again, Aut (\mathbf{P}^1) acts freely and properly on R_n . Hence

Corollary. $R_n/\operatorname{Aut}(\mathbf{P}^1)$ is a non-singular complex space of dimension 2n+2g-5.

Now, we put

$$T_q(n) = \{t \in T_q | R_n(V_t) \text{ is non-empty} \}.$$

Applying the corollaries of Theorems 2 and 3, we can prove

Theorem 4. Let p be a prime number such that $(p-1)^2 \leq g-1$. Then

(1) $T_g(p)$ is an open subspace of a closed complex subspace of T_g and is of dimension 2p+2g-5.

(2) $T_q(p)$ is singular at $t \in T_q(p)$ if and only if dim $|2D_{\infty}(f)| > 2$, for $f \in R_p(V_t)$. $(D_{\infty}(f)$ is the polar divisor of f.)

Corollary. (1) (Rauch [4]) If $g \ge 2$, then $T_g(2)$, the hyperelliptic locus, is a non-singular closed complex subspace of T_g of dimension 2g-1.

(2) If $g \ge 5$, then $T_g(3)$, the locus of trigonal compact Riemann surfaces, is non-singular and of dimension 2g+1.

(3) If $p \ge 5$ is a prime number such that $(p-1)(2p-3) \le g-1$, then $T_g(p)$ is non-singular.

References

- [1] Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné. Ann. Inst. Fourier, 16, 1-95 (1966).
- [2] Holmann, H.: Quotienten komplexer Räume. Math. Ann., 142, 407-440 (1961).
- [3] Namba, M.: Moduli of open holomorphic maps of compact complex manifolds. Ibid., 220, 65-76 (1976).
- [4] Rauch, H. E.: Weierstrass points, branch points and the moduli of Riemann surfaces. Comm. Pure. Appl. Math., 12, 543-560 (1959).