
256 Proc. Japan Acad., 5.4, Ser. A (1978) [Vol. 54(A),

Amida.Diagrams and Seifert Matrices
Positive Iterated Torus Knots

By Makoto YAMAMOTO
Department of Mathematics, School of Science

and Engineering, Waseda University

(Communicated by Kunihiko KODAIRA, M.J.A., Oct. 12, 1978)

1. Introduction. In [12], Seifert gave a method to construct
an orientable surface which spans a knot by means of a regular pro-
jection. As for the torus knot with canonical regular projection, he
proved that the surface spanning it has the minimal genus.

Let q--((m, 2))= be a sequence of pairs o relatively prime in-
tegers. As a generalization of a torus knot, an iterated torus knot
k(q) of type q is defined. If all integers are positive and all cross-
ings of k(q) are of the same type, we shall call k(fq) to be "positive".

In this paper we shall give a representation, Amida-diagram of a
positive iterated torus knot by means of a certain regular projection.
By making use of it, we shall explicitly construct the Seifert’s sur-

face with the minimal genus and a 1-homology basis o the surface
with respect to which the Seifert matrix is unimodular and lower tri-
angular.

Our results are related to some properties of irreducible complex
analytic curve singularity. (Refer to [3] and [6, Problem 1.5]: for
representations of iterated torus knots, [1] and [2]; for singularity,
[13], [10] and [8]; and for Seifert matrix, [3] and [7].) Hacon [5]
studies the Seifert matrices of iterated torus knots from a different
point of view (see also Ohkawa [9]).

The author wishes to thank Prof. M. Kato or some helpful com-
ments and suggestions.

2. The regular projections of iterated torus knots. We con-
sider a knot ] in the euclidean 3-space R. Let u" R-.R be a regular
projection of k. Let p" z(k)-.R be a correspondence such that p lifts
up the overpaths in small neighborhoods of the double points of u(k)
and the inclusion map in the outside as in Fig. 1. We call this cor-
respondence p: u(k)--R to be the orthogonal lift of (k), and denote
pu(k) by K. Obviously k and K are o the same type.

Let be a sequence of pairs of relatively prime positive integers
((m, )}= or q__> 1 and be a subsequence ((m, ))= or ]- 1, ..., q.
Then iterated torus knot k(q) of type q is inductively constructed as
follows; let k(0) be an unknotted circle oriented counterclockwise in
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the plane R2R. We suppose that k(q_) (q_>_l) has been constructed.
Let T be a tubular neighborhood of k(q_) in R with boundary 3T.
Then k(q) is defined as being a knot which lies on 3T and sweeps
around T mq times in its longitude and q times in its meridian, where
orientations of the longitude and the meridian are parallel to k(q_)
and left-handed screw with respect to k(Fq_)respectively. The ori-
entation of k(q) is induced by that of k(q_). Then k(l) is the so-
called torus knot of type (m, 2,).

a3 a’

Fig. 1 Fig. 2. g(ll) of type VI= {(4, 5)}.

For the torus knot k() there is the canonical regular projection
: R3-.R such that the double points of =(k(l)) are arranged m--I
in rows and in columns. (See Fig. 2, where z(k(l)) is obtained by
identifying a with a for each i--1,..., m.)

We consider of the braid representation of the orthogonal lift
K() of =(k()). We note that all crossings of K() are of the same
type, that is, at each crossing point the overpath crosses through the
underphath from the right to the left with respect to the orientation
as in Fig. 2. Let b (i=l,...,m--l) be a generator of the braid
group as in Fig. 3. Let B(I) be the braid representation of K(I).
Then we have

B(’) (o1)’
where a is a word of the braid group

a=bb b,,_,
(see Fig. 4).

aml
Fig. 3. bi. Fig. 4. a1.

From the construction of the iterated torus knot k(q), we can
show in the same way as for K() that there is a regular projection
RR of k(q) (q__>2) which is characterized by the braid represen-
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tation of the orthogonal lift K(Eq) of rc(k(STq)) as follows; let a and
denote the words

b_,_+b_-)m+" b__,
(b. b+,_)(b_ b+_)... (b_,+... b),

for ]=2,..., q and i=1,..., _--1, where

=mmz. .m.
Let n and d be

ni=i
n:2En_im--2_lm_lm ]:1, ..., q,
d0=0,
d=md_+ (m--l)Inl =1, ..., q.

We denote the braid representation of K(E)(]=1, ..., q) by B(ff).
Then we have

Theorem 1. There is a regular projection " RR of
(q!2) such that B(ff) is given by

B(ff) (B(E_,))(.),
where @ is the operation which substitutes into b in B(ffa_,).

We note that d denotes the number of the double points of =(k(ff))
for ]=0, ..., q.

Thus all crossings of K() are of the same type when n>0 for
all ]=1, ..., q. We call K(ff) to be positive if n> 0 for all ]=1, ...,
q. Since torus knots K() are positive, we can simplify the diagram
in Fig. 2 as in Fig. 5, where each vertical line connecting two hori-
zontal lines represents the crossing as in Fig. 3. For positive iterated
torus knots K(ff) we can simplify the diagram of K(ff) as in Fig. 6,

Fig. 5. The Amida-diagram of K(I) of type ff1--={(4, 5)}.

Fig. 6. The Amida-diagram of K(SY.) of type ff={(3, 4), (2, 19)}.
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as in case of K(ff). We call this simplified diagram of K(ffq) the
"Amida-diagram" of K(q).

:. Seifert’s surfaces and Seifert matrices of positive iterated
torus knots. Seifert [12] gave a method to construct an orientable
surface which spans a knot by means of a regular projection as fol.-
lows; we start anywhere on the knot and follow it along in the posi-
tive direction until we come to a crossing point, then we hop over the
other branch and follow it in the positive direction until we come to
another crossing point, and so on, until we close up. Then we get a
circle, Seifert circle. We do this work until there is no part of the
knot that we have not passed. Then we get a number of Seifert cir-
cles which are disjoint. We span a half-twisted rectangle at each
crossing so that the surface consisting of the disks with boundary
Seifert circles and the half-twisted rectangles is orientable and span-
ning the knot.

As for the torus knot k(), Seifert [12] showed that the Seifert’s
surface spanning it with respect to the canonical regular projection
has the minimal genus.

From now on, we consider positive iterated torus knots K(q).
We may think that the Amida-diagram of K(q) represents its
Seifert’s surface, that is, each horizontal line represents the Seifert
circle spanning a disk vertical to the plane and each vertical line re-
presents a half-twisted band. We denote the Seifert’s surface of
K(q) by q.

Fig. 7

In the Amida-diagram of K(q), which can be also considered as
the Amida-diagram of 2q, we denote the ith (1 <_ i <_m. mq) horizontal
line from the top by F and ]th vertical line from the left connecting

F and F/ by b. Let c be the canonical closed curve on q which
passes through b, Ft+l, b+1 and F as in Fig, 7. By (c, c/ we de-
note the linking number of c and c which is pushed out of q in a
normal direction in R. Then by suitable choice of the orientation,
we obtain the following.

Lemma. For the closed curves cij and c on q, we have
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1 i--=lc and i--l,
--1 i--k and ]--1 + 1,(c, c+)--
_+ 1 or 0 i-- k + 1,
0 otherwise.

Let F(q) be the Seifert matrix of a positive iterated torus knot
K(q) with respect to the 1-homology basis {c} and let

1gq---(dq--m...mq+ 1) q--l, 2, ...
Theorem 2. F(q) is the 2gq 2gq lower triangular unimodular

matrix. (Compare with Durfee [3].)
In particular we have
Corollary 1. 2q is the surface spanning K(q) with minimal

genus gq.
If n_mn for all ]=2, ..., q, we note that k(q) is the knot

which is associated with an irreducible polynomial f(z, z) in two
complex variables with f(0, 0)=0 whose Puiseux characteristic pairs
about the origin are (n, m), ..., (nq, mq). In this case, rom Sakamoto
[9] we have

Corollary 2. A tensor product of matrices F(Yq) is realized as
being the Seifert matrix of an isolated hyper surface singularity in
CTM. (Refer to Kato [6, Problem 1.5].)
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