62. A Complex Analogue of the Generalized Minkowski Problem. II

By Mikio Ise

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1978)

1. In this note we continue our studies achieved in [1] for some type of non-linear partial differential equations of the determinant type over the complex *n*-projective space P_{C}^{n} . In that previous note we were concerned the *real hessian* of the unknown real-valued function φ on P_{C}^{n} , while, here, we shall deal with those concerning the *complex hessian* of the real-valued function φ on P_{C}^{n} . Further, we will mention the relation between the result of the note [1] and that of the present one.

2. Let us now denote by (M, g) a compact smooth hermitian manifold with the hermitian metric g, and fix our notation adopted in what follows: $\mathcal{F}_{\mathbf{R}}(M)$ designates the space of all real-valued smooth functions on M, $\mathcal{X}(M)$ that of all complex-valued smooth vector fields on M; whereby $\mathcal{X}(M)$ is decomposed directly into the two spaces $\mathcal{X}^{1,0}(M)$ and $\mathcal{X}^{0,1}(M): \mathcal{X}(M) = \mathcal{X}^{1,0}(M) + \mathcal{X}^{0,1}(M)$, where $\mathcal{X}^{1,0}(M)$ (resp. $\mathcal{X}^{0,1}(M)$) denotes the space of vector fields of type (1, 0) (resp. of type (0, 1)). The complex gradient $\operatorname{grad}_{\mathcal{C}} \varphi \in \mathcal{X}^{1,0}(M)$ (resp. its complex conjugate $\overline{\operatorname{grad}}_{\mathcal{C}} \varphi \in \mathcal{X}^{0,1}(M)$) for any $\varphi \in \mathcal{F}_{\mathcal{R}}(M)$ will be defined by

(1) $g(\operatorname{grad}_{C} \varphi, Z) = Z \cdot \varphi,$ for every $Z \in \mathcal{X}^{0,1}(M),$ (resp. $g(\operatorname{grad}_{C} \varphi, Z) = Z \cdot \varphi,$ for every $Z \in \mathcal{X}^{1,0}(M)$).

Then we can introduce the complex hessian tensor field $\operatorname{Hess}_{c}(\varphi)$ (resp. its complex conjugate $\overline{\operatorname{Hess}}_{c}(\varphi)$) of type (1, 1) over M by the following : (2) $\operatorname{Hess}_{c}(\varphi): X \to \nabla_{X}(\operatorname{grad}_{c} \varphi), \quad \text{for } X \in \mathfrak{X}^{1,0}(M),$

(resp. $\overline{\operatorname{Hess}}_{\mathcal{C}}(\varphi) \colon Y \to \overline{\mathcal{V}}_{Y}(\overline{\operatorname{grad}}_{\mathcal{C}} \varphi), \quad \text{ for } Y \in \mathfrak{X}^{0,1}(M)).$

We note that trace $\operatorname{Hess}_{c}(\varphi) = \Box \varphi$ and trace $\overline{\operatorname{Hess}}_{c}(\varphi) = \overline{\Box} \varphi$ in the usual notation. Corresponding to (1) and (2), we are now in a position to introduce the two non-linear partial differential operators D_{c} and \overline{D}_{c} of the complex (hessian) determinant type as follows:

(3) $D_c(\varphi) = \det \operatorname{Hess}_c(\varphi), \quad \overline{D}_c(\varphi) = \det \operatorname{Hess}_c(\varphi).$ Moreover, for the later use, we need to introduce the somewhat modified operators, namely for any real number λ , putting that

 $p_{\mathcal{C}}^{(2)}(\varphi) = \operatorname{Hess}_{\mathcal{C}}(\varphi) + \lambda \varphi \cdot I_n$ (resp. $\overline{p}_{\mathcal{C}}^{(2)}(\varphi) = \overline{\operatorname{Hess}}_{\mathcal{C}}(\varphi) + \lambda \varphi I_n$), where I_n designates the identity operator in $\mathcal{X}(M)$, we define (4) $D_{\mathcal{C}}^{(2)}(\varphi) = \det p_{\mathcal{C}}^{(2)}(\varphi)$, $\overline{D}_{\mathcal{C}}^{(2)}(\varphi) = \det \overline{p}_{\mathcal{C}}^{(2)}(\varphi)$, for any $\varphi \in \mathcal{F}(M)$. We would now like to call these differential operators as the generalized complex Monge-Ampère operators. 3. We will be now concerned with the partial differential equations on $M = P_c^n$ with Fubini-Study metric g:

(5), $D_c^{(\lambda)}(\varphi) = \kappa$, or, what is the same $\overline{D}_c^{(\lambda)}(\varphi) = \kappa$,

under the assumption that $\kappa \in \mathcal{F}_{\mathbb{R}}(M)$ is *positive everywhere* and the solutions are limited to the *elliptic* ones in the sense of the preceding note, namely we consider only the case where $p^{(\lambda)}(\varphi)$ (resp. $\overline{p}^{(\lambda)}(\varphi)$) are positive definite hermitian operators with respect to g. As for the equations (5), in a similar way as in [1] we get the following:

Theorem 1. When $\lambda = 1$, the equation (5)₁ has the unique elliptic solution φ for any given positive function κ .

Reference

 M. Ise: A complex analogue of the generalized Minkowski problem. I. Proc. Japan Acad., 53A (4), 129-133 (1977).