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1. A topological semigroup is a semigroup with a Hausdoff to-
pology in which multiplication is continuous in both variables. In
what follows S will denote a topological semigroup. An ideal P of S
is termed prime if ABcP implies that either AP or BP, A and B
being ideals of S. The notion of q-ideals has been defined in [6],
namely, an ideal of S is called, briefly, a q-ideal if it is expressed as
an intersection of open prime ideals of S.

Our main objective of this paper is to establish a necessay and
sufficient condition for a q-ideal of S to be closed provided that S is
compact and totallv disconnected. As an application, we shall show
that the radical of a compact and totally disconnected topological semi-
group with zero is closed.

Throughout the whole paper we shall use the following notation.
A* denotes the topological closure of a subset A of S.
X-Y means the set of elements of X which are not in Y, where

X and Y are any two sets. We write X-y instead of X--{y} when {y}
is a singleton.

E denotes the set of all idempotents in S. E is known to be a
closed subset of S, and it is not empty if S is compact.

Jo(A) means the union of all ideals of S which are contained in A,
i.e., Jo(A) is the largest ideal contained in A if J0(A)=/=0, where A is
a subset of S.

2. The following lemma is an anlogy of the well-known result
in the theory of topological groups (e.g. see [2]).

Lemma 2.1. Let S be locally compact and totally disconnected,
and let S have a right [or left] identity e. Then any neighborhood of
e contains a compact subsemigroup neighborhood of e.

Proof. Let W be any neighborhood of e. Since S is a locally
compact and totally disconnected Hausdorff space, there exists a com-
pact and open subset U of S such that e e U W.

Let
c=(s- u) u,

so that C is closed. Since Ue C (-- U C) is empty and U is compact,
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there is an open neighborhood V of e such that V U and UV C=O;
since UV U, this implies that UV U. Then, of course, UV U
for every positive integer n. From VU it follows that t n V U.
Then T--( [2 n V)* is the desired semigroup neighborhood of e.

For the case where S has a left identiy the proof is analogous.
Proposition 2.2. Let S be as in Lemma 2.1. If W is a neighbor-

hood of e containing no idempotent other than e, then W contains a
compact, open group neighborhood of e.

Proof. By Lemma 2.1, there exists a compact subsemigroup G
such that GW and G is a neighborhood of e. G is a compact topol-
ogical semigroup with the right [or left] identity e, and moreover it
has no idempotent distinct from e therefore from the structure theo-
ry of compact semigroups (e.g. see [1, Corollary 2 to Theorem 2]) one
can readily see that G is a group. Let x e G. If V is an open neigh-
borhood of e such that VG, then xV is an open neighborhood of x
with xVG. This implies that G is an open subset of S. Thus G is
the desired group neighborhood of e.

:}. We now proceed to prove the main theorem of this paper.
Theorem :.1. Let S be compact and totally disconnected. Then,

a q-ideal Q of S is closed in S if and only if E Q is closed in S.
Proof. The "only if" part is obvious.
To prove the "if" part let us assume that Q is not closed and seek

a contradiction. Since Q* is an ideal of S not contained in Q, by
Theorem 2.6 in [6] there is an idempotent e in Q*-Q. Then there
exists a neighborhood U o e such that U (E Q)=, because e e E
Q=(E Q)*.
Now consider the semigroup Se. This semigroup is a compact,

totally disconnected topological semigroup as a subspace of S. Ac-
cordingly we can apply Lemma 2.1 to this semigroup, so that we can
find a compact subsemigroup T o: Se such that T U and T is a neigh-
borhood of e in the space Se. Hence there exists a neighborhood V
of e in the space S such that VSe T.

Next we shall show that T does not meet Q. If otherwise, there
is an element x in T Q. Let f be the idempotent in the closure of
the positive powers of x, i.e., f--f e {x n= 1, 2, }*. Then f must
be contained in T, because T is a compact semigroup. At the same
time, it follows rom x e Q that f e Q, since Q is an ideal o S (in this
connection, see the proof o [3, Theorem 1]). That is, f e EQ.
Therefore we would have i :/: T (E Q)c U (E Q), and this contra-
diction shows that T Q--O.

It ollows therefore that V Se gl Q T Q . From Se Q
--Qe we have VV1Qe=9. On the other have e e Q* implies e e Q*e
=(Qe)*, and this means that V Qe#:9. Thus we arrived at a con-
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tradiction. This completes the proof.
As an immediate consequence of the preceding theorem we obtain

the ollwing result.
Corollary :}.2. Let S be compact and totally disconnected, and

let Q be a q-ideal of S. If Q contains only a finite number of idem-
potents, then Q is closed in S.

Suppose now that S has a zero element, 0. An element b of S is
said to be nilpotent if b-O. We denote by No the set of all nilpotent
elements of S. The largest ideal contained in No is called the radical
of S and denoted by N, i.e., N=Jo(No).

Corollar 3.3. Let S be compact and totally disconnected, and
let S have a zero element. Then the radical of S is closed in S.

Proof. It has been shown in [4] that N is the intersection of all
open prime ideals of S (see [4, Theorem 1]). Therefore N is a q-ideal
of S. Furthermore we have EV/N=(0}. Applying the preceding
corollary we can conclude that N is closed in S.

Combining the above corollary and Corollary 3.5 in [5], we obtain
the ollowing result which is a partial answer to the problem describ-
ed in [5].

Corollary 3.4. Let S be as in Corollary 3.3. If the radical N is
open, then N can be expressed as an intersection of a finite number of
open prime ideals.

4. Let e, f e E. We say that f is under e if f :/: e and ef f fe.
In proving Theorem 4.1 we need the ollowing result which has

been proved in [4, Theorem 2]" Let S be compact and P a proper
ideal of S; then P is open and prime if and only if P has the form P

Jo(S-- e), e e E.
Theorem 4.1. Let S be compact and totally disconnected, and

let P be the proper open prime ideal of S with the form P=Jo(S-e),
e e E. If we denote by F the set of all idempotents, which are under
e, then P is closed in S if and only if e F*.

Proof. The "only if" part" Suppose that P is closed, i.e., P
=P*. LetfeF. Fromfe=f=ef, we have feeSe. Since e is a
P-primitive idempotent (see [5, Lemma 2.1]), f must be contained in
P, that is, FP. (An idempotent g o S is said to be a P-primitive
idempotent if g e P and g is the only idempotent in gSg--P.) Hence
we obtain F* P* P e.

The "if" part" Suppose that e eF*. We assume the converse,
that P* :/: P. Since P* is an ideal of S properly containing P, P* must
contain e. By the assumption there exists a neighborhood U of e such
that U F=O.

Now consider the semigroup eSe. This semigroup is a compact,
totally disconnected topological semigroup as a subspace of S. Fur-
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thermore eSe has the identity e. Accordingly we can apply Lemma
2.1 to the semigroup eSe, and so there exists a compact subsemigroup
T of eSe such that TU and T is a neighborhood of e in the space
eSe. Hence there is a neighborhood V of e in the space S such that
VeSeT.

We shall next show that TP--9. If TV]PO, then by the
same argument as in the proof of Theorem 3.1 we can find an idem-
potent f in T P. From f e eSe we have ef=f=fe, and f is differ-
ent from e, because f e P. Therefore f is under e, i.e., f e F. Hence
we would have O=/:TFUF, and this contradiction shows that
TP=.

It follows therefore that V eSe ( P-O. From this we see that
VCePe---O, since eSeP----ePe. On the other hand, it ollows from
e e P* that e e eP*e----(ePe)*. And this implies that V ePe=/=O. Thus
we arrived at the contradiction, which completes the proof.

Corollary 4.2. Let S be compact and totally disconnected. If P
is an open prime ideal of S which is minimal among the open prime
ideals of S, then P is closed in S.

Proof. We denote by K the kernel (--the unique minimal ideal)
of S;K is well-known to be closed. Let us suppose that P has the
orm P-Jo(S--e), e e E and denote by F the set of all idempotents
which are under e. Then F must be contained in K, because P is
minimal among the open prime ideals of S. It follows therefore that
F*K*--KP, and hence e eF*. Applying Theorem 4.1, we can
conclude that P is closed in S.
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