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1. Introduction. Let/2 be a bounded domain in R with the
boundar,y , of class C. Let p(x), x e ., be a real smooth function de-
fined on the boundary ,. For small e>__0, let 9, be the domain bound-
ed by the hyper-surface .,={y e I:tn[y’--X+ep(X)vz,, X e ’}, where vx de-
notes the unit outer normal vector to , at x e .. Clearly, 90=9 and
,0=-. Let G(, x, y) denote the Green function of the Dirichlet bound-
ary value problem for the Laplacian, i.e.,
(1.1) --AG(,, x, y)=8(x--y), for V(x, y)
(1.2) G(e, x, y)=0 for x in ,, and y in
We abbreviate G(0, x, y) as G(x, y). Let
(1.3) G(x, y)=lim e-l(G(e, x, y)-G(x, y))

for any x and y in /2. Then, the celebrated Hadamard variational
formula reads

(1.4) 3G(x, y)= OG(x, z) OG(y, z)p(z)da(z),
where da(z)denotes the surface element of the boundary hyper-sur-
face ,.

Hadamard proved his formula in the case that the function p(z)
did not change sign. Proof of the formula (1.4) for general p(z) can
be found, for example, in Garabedian-Schiffer [4], Garabedian [5] and
Aomoto*) [2]. A few of new applications of the Hadamard vari-
ational formula are found in, for instance, Aomoto [2] and Fujiwara-
Tanikawa-Yukita [3]. Since the work of Hadamard, variational for-
mulas are known for the Green functions of certain classical elliptic
boundary value problems. For instance, variational formula for the
Green function of iterated Laplacian under the Dirichlet boundary
condition was given already by Hadamard [6].

The aim of this note is to generalize these and prove variational
formulas for the Green functions of some normal elliptic boundary
value problems. Our proof is a simple modification of Hadamard’s
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original discussions in [6]. What make our proof rigorous are the
Whitney extension theorem in [8] of differentiable functions and a
priori estimates of Agmon-Douglis-Nirenberg [1].

2. Statement of results. Let A(x,D) be an elliptic linear
partial differential operator of order 2m whose coefficients are defined
and of class C in some neighbourhood U of 9. Since 9, is the domain
bounded by the hypersurace
is contained in U if is smaller than some positive number e0.

We consider elliptic boundary value problem in 2
A(x, D)u(x)=f(x) or x e ,

(2.1)
[B(e, x, D)u(x)=O, ]=1, 2, ..., m, for x in ,,

where B(e, x, D) is a boundary differential operator of order m and
depending on the parameter . We assume the following assumptions
throughout this paper

(Ass. 1) The order m of the boundary operator B(, x, D) is less
than 2m and independent of e if is small enough.

(Ass. 2) If we represent B(e, x, D) as

B(, x, D)= b(, x)( -),
then or any and ], the unction b(, x) is a

(, x) e (--0, 0) U.
(Ass. 3) A(x, D) is properly elliptic at every point of
(Ass. 4) The system of boundary conditions (B(O, x, D)}= is nor-

mal in the sense of Schechter [7].
(Ass. 5) The system {A(x, D), {B(0, x, D)}=} satisfies the comple-

menting condition in the sense of Agmon-Douglis-Nirenberg [1].
(Ass. 6) The boundary value problem (2.1) with -0, gives rise

to a self-adjoint operator A0 which is an isomorphism of its domain

D(Ao)--(ueH(t)lB(O,x,D)ul=Oor ]=1, ...m} onto L(tO). Here
H(t9) denotes the Sobolev space of order s e R.

As a simple consequence of the above assumptions, we have
Lemma 2.1. Assume that assumptions (Ass. 1)-(Ass. 6) hold.

Then, for every sufficiently small , the following properties hold"
( ) A(x, D) is properly elliptic at every point of .
(ii) The system of boundary differential operators {B(e, x, D)}y__

is normal in the sense of Schechter [7].
(iii) The system {A(x, D), {B(, x, D)}__} satisfies the complement-

ing condition in the sense of Agmon-Douglis-Nirenberg [1].
Before stating our results, we must recall the discussions in

Schechter [7] about the Green’s formula. First we take another nor-
mal system of boundary differential operators {S(, x, D)}= such that

(B(e, x, D)} J {S(, x, D)} forms a Dirichlet system in the sense of
Schechter, that is, orders of the operators B(, x, D) and S(e, x,D)
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are all different and fill up the set {0, 1, ..., 2m--1}. Clearly, we can
choose S(e, x, D) so that (Ass. 2) holds with B(, x, D) replaced
by S(e,x,D). Second, there exists a unique Dirichlet system
{B.(, x, D}y__ U {S.(e, x, D)}y= such that we have Green’s formula

A(x, D)u(x)v(x)dx-- u(x)A(x, D)*v(x)dx-- [ B(, x, D)u(x)S(, x, D)v(x)da(x),
d

for any u and v in H(tg,). Here da(x) denotes the volume element
of the hyper-suface ;,,. (Ass. 2) holds with B.(, x, D) and S.(, x, D)
in place of B(,x,D) and S(e,x,D), respectively. We have two
Dirichlet systems
(Bj(, x, D)}=I D {Sj(, x, D)}=I and {B.(, x, D)}= {S.(e, x, D)}=.

There is a unique system of linear partial differential operators
{T.(e,x,D)}g= on T, containing only differentiation in the direction
tangential to the hyper-surface ;- such that

(2.4) B(e, x, D)-- T.(, x, D)B(, x, D)+ , T./(s, x, D)S(e, x, D),
k=l

(2.5) S.(e, x, D)---- T.+(, x, D)B(e, x, D)+ , _+,,T/(- x, D)S(, x, D).
k=l k=l

Lemma 2.2. Assume that (Ass. 1)-(Ass. 6) hold. If the bound-
ary value problem (2.1) defines a self-ad]oint operator As, then
(2.6) T+(, x, D)----0, for ], k----1, 2, ..., m.

Corollary. Assume that (Ass. 1)-(Ass. 6) are satisfied. Then,
1) We can choose B(O, x, D)--B(0, x, D), ]--1, 2, ..., m.
2) There exists a system of linear partial differential operator

H/(, x, D) such that
(2.7) T/(e, x, D)--sH/(, x, D), ], k--l, 2, ..., m.
The operator H+(e, x, D) contains only differentiations tangential to

Now we can state our results. For the sake of brevity, we denote
B(0, x, D) by B(x, D), S(O, x, D) by S(x, D) and so forth.

Theorem 1. Assume that (Ass. 1)-(Ass. 6) hold. Then,
1) For any sufficiently small e>0, the elliptic boundary value

problem

A(x, D)u(x)--f(x) for x in(2.8)
tB(, z, D)u(z)--O for z in T, ]-- 1, ., m,

has a unique solution u in H2(9) for any f in L2(D).
2) Let G(e, X, Y) be the Green function for the boundary value

problem (2.8), i.e.,
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[A(x, D)G(, x, y)=3(x--y) for any x and y in
(2.9) B(e, z, D)G(, z, y)--O, ]--1, 2, ..., m,

for any z in and y in
Then, we have the variational formula

(2.10)

lim e-l(G(e, x, y)--G(x, y))

+ H/(O, z, D)S(z, D)G(z, y)S(z, D)G(z, y)da(z)
j=l

--, B(O, z, D) G(z, y)S(z, D)G(z, y)da(z),
j=l

where -B(O, z, D)-- , 3--b.(e, z) and G(x, y)= G(O, x, y)

as an abbreviation.
In particular, the formula (2.10) becomes a little simpler in the

following case.
Theorem 2. Assume that t4e following (Ass. 7) holds as well as

(Ass. 1)-(Ass. 6)"
(Ass. 7) The boundary value problem (2.1) defines a self-ad]oint

operator for each .
Then, we obtain the following formula;

lim -(G(e, x, y)-G(x, y))
a-0

(..11) 01)

)-- B(O, z, D) G(z, x)S’(z, D)G(z, y)da(z).

3. Sketch of the proof. Theorem 2 follows from Theorem 1
and Lemma 2.2. Thus we have only to prove Theorem 1. The first
part of Theorem 1 is a consequence of a priori estimate of Agmon-
Douglis-Nirenberg [1]. We present here a sketch of the proof of the
second part of Theorem 1, i.e., the proof of the variational formula
(2.10). We fix two points x and y in tO such that x:/:y. Take a com-
pact set Kct9 containing x and y. Consider G(z, x) as a function of
z. Then this is defined for z in and not defined for z outside /2.

This is the reason why Hadamard assumed that p(z) did not change
sign. We avoid this difficulty by taking a Whitney extension of
G(z, x). Since . is of class C and the function G(z, x) is a C func-
tion of z in D-{x}, there exists a Whitney extension G(z, x) of G(z, x)
as a function of z. (z,x) is defined and C for z in R--(x}. We
have
(3.1) A(z, D)G(z, x) --3(z- x) + g(z, x),
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where g(z, x) is a C function of z e R and satisfies the equation

(3.2) g(z, x)----0, for z in

In particular, all the derivatives of g(z, x) with respect to z vanish if
z is in ,. Let 5=lx--Yl. Let (z) be a C function of z such that

1 in a small neighbourhood of x and vanishes if z-- xl-. Let9(z)

(, } denote the pairing of ’(9,) and ’(tg). Then we have
G(, x, y)= (G(, z, y), (z-x)

--(G(e, z, y)(z), A(z, D)G(z, x)}

+ (G(, z, y), (1-9(z))(A(z, D)G(z, x)--g(z, x))}

A(, D)G(s, , )9()G(, )dz

(3.3) + A(z, D)G(s, z, y)(1-(z))(z, x)dz

+ _.[, G(, z, y)g(z, x)dz

B’ D)G(, )de’().-- S(s, z, D)G(, z, y) (s, z,

Here we used the Green ormula (2.3). Since (2.9) holds, this is equal
to

(((z, x), (z--y)>-- S(e, z, D)G(e, z, y)B(, z, D)(z, x)da’(z)

+ _I G(e, z, y)g(z, x)dz.

Since G(y, x)= G(x, y), we obtain that
G(, x, y)--G(x, y)

+_j’. G(s, , )(, )d.

As a consequence of (..), we have

(g.g) lira s- [ G(s, , g)g(, g)g=O.

I follows from (9..4)

(3.6)
/ T/(, z, D)S(, z, D)G(z, x).

Applying (2.7), we have
(3.7) T./’(, z, D)S(, z, D)G(z, x)=H/(e, z, D)S(, z, D)G(z, x).
On the other hand,
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B(e, z, D)(z, x)=(B(, z, D)(z, x))

because B(O, z, D)G(z, x)l=.er=O for any w in ,. Therefore,
B(, z, D)G(z, x)

Vz
+ O(d).

Dividing both sides of (3.4) by e and using (3.5), (3.6) and (3.9), we
obtain

lim e-l(a(, x, y)--G(x, y))
-0

lira [ S(e, z, D)G(e, z, D)
0 drs

(3.10) X (-B(0, z, D)(z, x) + p(z) -.(B,(z, D)G(z, x))

+ H/(s, , D)S(s, , D)G(z, ) de"(z).

The limit in the right hand side of (8.10) exists, because a priori esti-
mates for the coercive elliptic boundary value problem (..8) hold uni-
formly with respect to the parameter s. The variational formula
(..10) is an immediate consequence of (.10). More detailed proof will
be published elsewhere.
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