73. A Residue Formula for Chern Classes Associated with Logarithmic Connections

By Makoto OTSUKI

Department of Mathematics, Chiba University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 13, 1978)

1. Let E be a holomorphic vector bundle over a complex manifold M, and D be a meromorphic connection of E. Under some assumptions below, we have a relation between the residues of D and the Chern classes of E. The purpose of this note is to state the relation. Full details and proofs will be published elsewhere.

The author is very grateful to Prof. K. Aomoto for many valuable suggestions.

2. Let Z be the pole of D. We assume the following :

(H.1) Z is normal crossing,

(H.2) Let $Z = \bigcup_{j \in \mathbb{N}} Z_j$ be the decomposition of Z into irreducible

components (N is a set of indices). Each Z_j is non-singular,

(H.3) D has a simple logarithmic pole along Z (see Deligne [3]), (H.4) In the case other M is not compact D is assumed to be

(H.4) In the case when M is not compact, D is assumed to be integrable.

Then the residue of D along Z_j , $\operatorname{Res}_j D$, is well-defined as a holomorphic section of $\operatorname{End}(E)|_{Z_j}$, the restriction of the endomorphism bundle of E onto Z_j [3].

Let $J = (j_1, j_2, \dots, j_k)$ be an element of $N^k = N \times N \times \dots \times N$ (k times). If among j_1, j_2, \dots, j_k there exists p different indices, say $j_1^*, j_2^*, \dots, j_p^*$, put $J^* = \{j_1^*, j_2^*, \dots, j_p^*\}$ and let a_m be the number of j_m^* appearing in J ($1 \le m \le p$).

Define $Z_{J^*} = \bigcap_{m=1}^{p} Z_{j_m^*}$. This is a submanifold of M of codimension p, not necessarily connected. Let $Z_{J^*} = \bigcup_i Z_{J^*}^{(i)}$ be the decomposition of Z_{J^*} into connected components.

It is known ([2], [3]).

Let c_k (A_1, A_2, \dots, A_k) be the completely polarized form of the kth Chern polynomial $c_k(A)$ $(A, A_j$ are matrices). Then for any element $J = (j_1, j_2, \dots, j_k)$ in N^k ,

 $c_k(\operatorname{Res}_{j_1} D, \operatorname{Res}_{j_2} D, \cdots, \operatorname{Res}_{j_k} D)$

is constant on each component $Z_{J^*}^{(i)}$ by (H.4) or by the compactness of M when M is compact. Denote this value by $c_k (\operatorname{Res}_J D)^{(i)}$.

A submanifold W of M of codimension p determines an element

M. Otsuki

of $H^{p,p}(M)$, the Dolbeault cohomology group of M of type (p, p). We denote it by $c_{p}(W)$.

3. Now we can state the following

Theorem. In $H^{k,k}(M)$,

$$c_{k}(E) = (-1)^{k} \sum_{J \in N^{k}} \left\{ \sum_{i} \left\{ c_{k}(\operatorname{Res}_{J} D)^{(i)} c_{p}(Z_{J^{*}}^{(i)}) \right\} \prod_{m=1}^{p} c_{1}(Z_{J^{*}})^{a_{m}-1} \right\}$$

where $c_k(E)$ is the k-th Chern class of E.

Remarks. (1) Let K be a $\bar{\partial}$ -closed smooth curvature matrix of E of type (1, 1). $c_k(E)$ is the class in $H^{k,k}(M)$ represented by the (k, k)form $c_k\left(\frac{-1}{2\pi i}K\right)$.

(2) In general, $c_k(\operatorname{Res}_J D)$ takes different values on various components $Z_{J^*}^{(i)}$.

4. Let $\{U\}$ be an open covering of M such that

(1) there exists a holomorphic frame e of E on U,

(2) each Z_j is defined by a holomorphic function f_j in U.

Then it holds that $D(e) = D \otimes e$ on U, where the latter D is a matrix of 1-forms on U. The connection matrix D is explicitly written for each $J \in N^k$ as follows;

$$D = \sum_{j \in J^*} A_j \frac{df_j}{f_j} + B_{J^*} \quad \text{on } U,$$

where A_j are matrices of holomorphic functions on U and B_{J^*} is a matrix of 1-forms on U having a simple logarithmic pole along $Z_s, s \notin J^*$.

Let $[Z_j]$ be the line bundle determined by the divisor Z_j and D_j be a smooth metric connection of $[Z_j]$. Put

$$\tilde{B}_{J*} = B_{J*}|_{Z_J*} - \sum_{j \in J*} \operatorname{Res}_j D \cdot D_j|_{Z_J*}.$$

Then \tilde{B}_{J^*} is a connection of $E|_{Z_{J^*}}$ with poles along $Z_s \cap Z_{J^*}$, $s \notin J^*$.

Let D_E be a smooth metric connection of E. Put

$$L_{J*} = \tilde{B}_{J*} - D_E|_{ZJ^*} \quad \text{on } Z_{J*}.$$

Then we have the following

Proposition. L_{J^*} is an End (E)-valued 1-form on Z_{J^*} satisfying the following:

(1) $\bar{\partial}L_{J^*} = -\sum_{j \in J^*} \operatorname{Res}_j D \cdot K_j - K_E$ on $Z_{J^*} - \bigcup_{s \in J^*} Z_s$,

(2) $\operatorname{Res}_{s} L_{J*} = \operatorname{Res}_{s} D$ for $s \notin J^{*}$,

where K_E (resp. K_j) is the curvature matrix of the connection D_E (resp. D_j).

Using the above proposition and a similar technique used by Bott in [1], we can identify the both sides of the formula in the theorem as cohomologies defined by currents on M of type (k, k).

296

No. 9]

- [1] R. Bott: Vector fields and characteristic numbers. Michigan Math. J., 14, 231-244 (1967).
- [2] S. S. Chern: Complex Manifolds without Potential Theory. Van Nostrand (1967).
- [3] P. Deligne: Équations différentielles à points singuliers réguliers. Lecture Notes in Math., 163, Springer (1970).