66. Studies on Holonomic Quantum Fields. IX

By Michio Jimbo
Research Institute of Mathematical Sciences, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 13, 1978)

In this note we shall give a symplectic version of the 2-dimensional operator theory, previously expounded in the orthogonal case [2], [5], [6]. Of particular interest is the neutral theory discussed in § 4. Corresponding to the bose field $\varphi^{F}(a)$ [1], there arises a strongly interacting fermi field $\varphi^{B}(\alpha)={ }^{t}\left(\varphi_{+}^{B}(\alpha), \varphi_{-}^{B}(\alpha)\right)$. These two fields $\varphi^{F}(a)$ and $\varphi^{B}(a)$ are shown to share the same S-matrix in common, and their τ-functions are related to each other through simple formulas (34), (36), (38)-(39) (cf. IV-(49) [2]).

We remark that the 1-dimensional Riemann-Hilbert problem [4], [8] is also dealt with in the symplectic framework.

We follow the notations used throughout this series [1]-[6].
The author wishes to express his heartiest thanks to Prof. M. Sato and Dr. T. Miwa for many discussions and valuable suggestions.

1. Let W be an N-dimensional complex vector space equipped with a skew-symmetric inner product \langle,$\rangle . Let A(W)$ be the algebra generated by W with the defining relation $w w^{\prime}-w^{\prime} w=\left\langle w, w^{\prime}\right\rangle$. Denote by $S(W)$ the symmetric tensor algebra over W. As in the orthogonal case [3], [7], the norm map

$$
\begin{equation*}
\mathrm{Nr}: A(W) \xrightarrow{\sim} S(W) \tag{1}
\end{equation*}
$$

and the expectation value $\langle a\rangle$ of $a \in A(W)$ are defined analogously, by specifying a bilinear form $\left(w, w^{\prime}\right) \rightarrow\left\langle w w^{\prime}\right\rangle$ on W such that $\left\langle w w^{\prime}\right\rangle$ $-\left\langle w^{\prime} w\right\rangle=\left\langle w, w^{\prime}\right\rangle\left(w, w^{\prime} \in W\right)$.

Now let v_{1}, \cdots, v_{N} be a basis of W, and set $K=\left(\left\langle v_{\mu} v_{\nu}\right\rangle\right), H=\left(\left\langle v_{\mu}\right.\right.$, $\left.\left.v_{\nu}\right\rangle\right)=K-{ }^{t} K$. Consider an element g of the form
(2) $\quad \operatorname{Nr}(g)=\langle g\rangle e^{\rho / 2}, \quad \rho=\sum_{\mu, \nu=1}^{N} R_{\mu \nu} v_{\mu} v_{\nu}=v R^{t} v$
with $v=\left(v_{1}, \cdots, v_{N}\right)$. Contrary to the orthogonal case, $e^{\rho / 2}$ no longer belongs to $S(W)$. So we let $R_{\mu \nu}=R_{\nu \mu} \in t \cdot C[[t]]$, and regard g (resp. $e^{\rho / 2}$) as an element of $A(W)[[t]]$ (resp. $S(W)[[t]])$, the formal power series ring with coefficients in $A(W)$ (resp. $S(W)$). The norm map (1) is uniquely extended there. (This formulation is due to T. Miwa.) Most of the formulas in the orthogonal case are valid for g of the form (2), if we replace ${ }^{t} K$ by $-{ }^{t} K$. We tabulate below formulas corresponding to (1.5.5)-(1.5.6), (1.5.7)-(1.5.8) and (1.4.6)-(1.4.7) of [7].

$$
\begin{equation*}
\mathrm{Nr}(w g)=\left(\sum_{\mu, \nu=1}^{N} v_{\mu}\left(1+R^{t} K\right)_{\mu \nu} c_{\nu}\right) \cdot\langle g\rangle e^{\rho / 2} \tag{3}
\end{equation*}
$$

$$
\operatorname{Nr}(g w)=\left(\sum_{\mu, \nu=1}^{N} v_{\mu}(1+R K)_{\mu \nu} c_{\nu}\right) \cdot\langle g\rangle e^{\rho / 2}
$$

where $w=\sum_{\mu=1}^{N} v_{\mu} c_{\mu}$.
(4)

$$
\begin{gather*}
g \cdot v_{\nu}=\left(\sum_{\mu=1}^{N} v_{\mu} T_{\mu \nu}\right) \cdot g \\
R\left(K \oplus^{t} K T\right)=T-1, \quad T=\left(T_{\mu \nu}\right) . \tag{5}\\
\langle g\rangle^{2}=g g^{*} \cdot \operatorname{det}(1+K R)
\end{gather*}
$$

where $*$ is defined in [1]. Let $\Lambda=\left(\lambda_{\mu \nu}\right)={ }^{t} \Lambda$ be such that $\lambda_{\nu \nu}=1(\nu=1, \cdots$, n) and define $W(\Lambda)=\oplus_{\nu=1}^{n} W^{(\nu)}$ analogously as in [7]. Then

$$
\begin{equation*}
\operatorname{Nr}\left(g^{(1)} \cdots g^{(n)}\right)=\left\langle g^{(1)} \cdots g^{(n)}\right\rangle e^{\hat{\hat{\rho}} / 2} \tag{6}
\end{equation*}
$$

$$
\left\langle g^{(1)} \cdots g^{(n)}\right\rangle=\left\langle g^{(1)}\right\rangle \cdots\left\langle g^{(n)}\right\rangle \operatorname{det}(1-A(\Lambda) R)^{-1 / 2}
$$

$$
\hat{R}=R(1-A(\Lambda) R)^{-1}, \quad \hat{\rho}=\hat{v} \hat{R}^{t} \hat{v}
$$

where $\operatorname{Nr}\left(g^{(\nu)}\right)=\left\langle g^{(\nu)}\right\rangle e^{v(\nu) R(\nu) t t_{v}(\nu) / 2}, \hat{v}=\left(v^{(1)}, \cdots, v^{(n)}\right)$,

$$
R=\left(\begin{array}{cccc}
R^{(1)} & & & \\
& \ddots & \\
& & & R^{(n)}
\end{array}\right) \text { and } \quad A(\Lambda)=\left(\begin{array}{ccccccc}
& & & \lambda_{12} K & \cdots & \lambda_{1 n} K \\
\lambda_{12}{ }^{t} K & & & & \cdot & & \cdot \\
\cdot & \cdot & & & & & \cdot \\
\cdot & \cdot & & & & \cdot & \cdot \\
\cdot & & & & & \lambda_{n-1} K \\
\lambda_{1 n}{ }^{t} K & \cdots & \lambda_{n-1}{ }^{t} K & & &
\end{array}\right)
$$

Notice the exponent $-1 / 2$ of the determinant in (6), which differ from the orthogonal case by sign.
2. Let $\phi(u), \phi^{*}(u)$ denote the creation ($u<0$)-annihilation ($u>0$) operators of complex free bose field. Their commutation relations and expectation values read

$$
\begin{array}{ll}
\left(\begin{array}{ll}
{\left[\phi(u), \phi\left(u^{\prime}\right)\right]} & {\left[\phi(u), \phi^{*}\left(u^{\prime}\right)\right]} \\
{\left[\phi^{*}(u), \phi\left(u^{\prime}\right)\right]} & {\left[\phi^{*}(u), \phi^{*}\left(u^{\prime}\right)\right]}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 &
\end{array}\right) 2 \pi|u| \delta\left(u+u^{\prime}\right) \tag{7}\\
\left(\begin{array}{ll}
\left\langle\phi(u) \phi\left(u^{\prime}\right)\right\rangle & \left\langle\phi(u) \phi^{*}\left(u^{\prime}\right)\right\rangle \\
\left\langle\phi^{*}(u) \phi\left(u^{\prime}\right)\right\rangle & \left\langle\phi^{*}(u) \phi^{*}\left(u^{\prime}\right)\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 &
\end{array}\right) 2 \pi u_{+} \delta\left(u+u^{\prime}\right) .
\end{array}
$$

For $l \in C$ we set

$$
\begin{align*}
& \phi_{l}(x)=\int \underline{d u}(0+i u)^{l} e^{-i m(x-u+x+u-1)} \phi(u), \tag{9}\\
& \phi_{l}^{*}(x)=\int \underline{d u}(0+i u)^{l} e^{-i m(x-u+x+u-1)} \phi^{*}(u) .
\end{align*}
$$

In the case $l=0$ we write (9) simply as $\phi(x)$ and $\phi^{*}(x)$, respectively. Set further

$$
\begin{gather*}
\rho_{B}(a ; l)=2 \iint \underline{d u} d u^{\prime} R_{B}\left(u, u^{\prime} ; l\right) e^{-i m\left(a-\left(u+u^{\prime}\right)+a+\left(u-1+u^{\prime}-1\right)\right)} \phi(u) \phi^{*}\left(u^{\prime}\right), \tag{10}\\
\quad R_{B}\left(u, u^{\prime} ; l\right)=-2 \sin \pi l\left(\frac{u-i 0}{u^{\prime}-i 0}\right)^{-l+1 / 2} \frac{\sqrt{u-i 0} \sqrt{u^{\prime}-i 0}}{u+u^{\prime}-i 0}
\end{gather*}
$$

and define $\varphi_{B}(a ; l), \varphi_{l^{\prime}}^{B}(a ; l)$ and $\varphi_{l^{\prime}}^{B^{*}}(a ; l)$ as follows.

$$
\begin{align*}
& \operatorname{Nr}\left(\varphi_{B}(a ; l)\right)=\exp \left(\rho_{B}(a ; l) / 2\right) \tag{11}\\
& \operatorname{Nr}\left(\varphi_{l^{\prime}}^{B}(a ; l)\right)=\phi_{l^{\prime}}(a) \exp \left(\rho_{B}(a ; l) / 2\right) \\
& \operatorname{Nr}\left(\varphi_{l^{*}}^{*^{\prime}}(a ; l)\right)=\phi_{l^{\prime}}^{*}(a) \exp \left(\rho_{B}(a ; l) / 2\right) .
\end{align*}
$$

Notice that if $l=0, l^{\prime}=0$ (11) reduce to $1, \phi(a)$ and $\phi^{*}(a)$, respectively.
The local expansions corresponding to VII-(6), (7) are valid. Assum-
ing $l \notin \boldsymbol{Z}$ we have
(12)

$$
\begin{align*}
\operatorname{Nr}\left(\phi(x) \varphi_{B}(a ; l)\right)= & \sum_{j=0}^{\infty} \operatorname{Nr}\left(\varphi_{-l+1+j}^{B}(a ; l)\right) \cdot v_{-l+1+j}[a] \\
& +\sum_{j=0}^{\infty} \operatorname{Nr}\left(\varphi_{-l-j}^{B}(a ; l)\right) \cdot v_{l+j}^{*}[a] \\
\operatorname{Nr}\left(\phi^{*}(x) \varphi_{B}(a ; l)\right)= & \sum_{j=0}^{\infty} \operatorname{Nr}\left(\varphi_{l+j}^{B^{*}}(a ; l)\right) \cdot v_{l+j}[a] \\
& +\sum_{j=0}^{\infty} \operatorname{Nr}\left(\varphi_{l-1-j}^{B^{*}}(a ; l)\right) \cdot v_{-l+1+j}^{*}[a], \\
\operatorname{Nr}\left(\phi(x) \varphi_{l^{\prime}}^{B^{*}}(a ; l)\right)= & \frac{1}{2 \sin \pi l^{\prime}} \operatorname{Nr}\left(\varphi_{B}(a ; l)\right) \cdot\left(v_{-l^{\prime}}[a]-v_{l^{\prime}}^{*}[a]\right) \tag{13}\\
& +\operatorname{Nr}\left(\phi(x) \varphi_{B}(a ; l)\right) \cdot \phi_{l^{\prime}}^{*}(a), \\
\operatorname{Nr}\left(\phi^{*}(x) \varphi_{l^{\prime}}^{B}(a ; l)\right)= & \frac{1}{2 \sin \pi l^{\prime}} \operatorname{Nr}\left(\varphi_{B}(a ; l)\right) \cdot\left(v_{-l^{\prime}}[a]-v_{l^{\prime}}^{*}[\alpha]\right) \\
& +\operatorname{Nr}\left(\phi^{*}(x) \varphi_{B}(a ; l)\right) \cdot \phi_{l^{\prime}}(a) .
\end{align*}
$$

Here we have set $v_{l}[\alpha]=v_{l}\left(-(x-a)^{-}+i 0,(x-a)^{+}-i 0\right)$, etc. In (12) and (13), if the order of product is reversed as $\varphi_{B}(\alpha ; l) \phi(x)$ and so forth, we are only to replace the boundary values $\mp(x-a)^{\mp} \pm i 0$ by $\mp(x-a)^{\mp} \mp i 0$ (compare the case of fermion VII-(7) where a change in sign should be incorporated). We note in particular the relations

$$
\begin{align*}
\phi(x) \varphi_{l}^{B^{*}}(a ; l)= & \frac{1}{2 \sin \pi l}\left(\varphi_{B}(a ; l) \cdot v_{-l}[a]-m^{-1} \frac{\partial}{\partial\left(-a^{-}\right)} \varphi_{B}(a ; l)\right. \tag{14}\\
& \left.\cdot v_{-l+1}[a]+\cdots\right)+\left(\text { terms involving } v_{l+j}^{*}[a], j \geqq 0\right), \\
\phi^{*}(x) \varphi_{-l}^{B}(a ; l)= & \frac{1}{2 \sin \pi l}\left(\varphi_{B}(a ; l) \cdot v_{-l}^{*}[a]-m^{-1} \frac{\partial}{\partial a^{+}} \varphi_{B}(a ; l)\right. \\
& \left.\left.\cdot v_{-l+1}^{*}[a]+\cdots\right)+ \text { (terms involving } v_{l+j}[a], j \geqq 0\right) .
\end{align*}
$$

As a result of (12), (13) the operators (11) enjoy the following commutation relations with the free field $\phi(x), \phi^{*}(x)$ for spacelike separation of x and a :

$$
\varphi(a ; l) \phi(x)= \begin{cases}\phi(x) \varphi(a ; l) & \left(x^{+}>a^{+}, x^{-}<a^{-}\right) \tag{15}\\ e^{2 \pi i l} \phi(x) \varphi(a ; l) & \left(x^{+}<a^{+}, x^{-}>a^{-}\right)\end{cases}
$$

for $\varphi(a ; l)=\varphi_{B}(a ; l)$ or $\varphi_{l^{\prime}}^{B^{*}}(a ; l)$ with $l^{\prime} \equiv l \bmod Z$,

$$
\varphi(a ; l) \phi^{*}(x)= \begin{cases}\phi^{*}(x) \varphi(a ; l) & \left(x^{+}>a^{+}, x^{-}<a^{-}\right) \tag{16}\\ e^{-2 \pi i l} \phi^{*}(x) \varphi(a ; l) & \left(x^{+}<a^{+}, x^{-}>a^{-}\right)\end{cases}
$$

for $\varphi(a ; l)=\varphi_{B}(a ; l)$ or $\varphi_{l^{\prime}}^{B}(a ; l)$ with $l^{\prime} \equiv-l \bmod Z$.
3. Making use of the operators in $\S 2$ we now introduce our wave functions in the Minkowski space-time X^{Min}. For $\nu=1, \cdots, n$ we set

$$
\begin{align*}
& \tau_{B n} v_{0}\left(x^{*}, x ; L\right)=\pi\left\langle\phi^{*}\left(x^{*}\right) \varphi_{B}\left(a_{1} ; l_{1}\right) \cdots \varphi_{B}\left(a_{n} ; l_{n}\right) \phi(x)\right\rangle \tag{17}\\
& \tau_{B n} v_{\nu}(x, L)=2 \sin \pi l_{\nu}\left\langle\varphi_{B}\left(a_{1} ; l_{1}\right) \cdots \varphi_{l_{\nu}}^{*}\left(a_{\nu} ; l_{\nu}\right) \cdots \varphi_{B}\left(a_{n} ; l_{n}\right) \phi(x)\right\rangle
\end{align*}
$$

where $\tau_{B n}=\tau_{B n}(L)=\left\langle\varphi_{B}\left(a_{1} ; l_{1}\right) \cdots \varphi_{B}\left(a_{n} ; l_{n}\right)\right\rangle$ denotes the τ-function. These functions (17) are analytically prolongable to the subdomain of $\left(X^{c}\right)^{n+2}$ (and in particular that of $\left.\left(X^{\mathrm{Euc}}\right)^{n+2}\right)$ defined by $\operatorname{Im}\left(x^{*}-a_{\nu}\right)^{ \pm}$ $<0, \operatorname{Im}\left(a_{\mu}-a_{\nu}\right)^{ \pm}<0(1 \leqq \mu<\nu \leqq n)$ and $\operatorname{Im}\left(x-a_{\nu}\right)^{ \pm}>0$, to result in the canonical basis $v_{0}(L), v_{\nu}(L)$ in VIII- $\S \S 1,2$, respectively. In the sequel
the vacuum expectation values (17), $\tau_{B n}$, etc. are often confused with their Euclidean continuations. From (14) we have

$$
\begin{equation*}
\alpha_{\nu \nu}(L)=-m^{-1} \partial_{a_{\nu}} \log \tau_{B}(L) \quad(\nu=1, \cdots, n) \tag{18}
\end{equation*}
$$

in the notation of VIII. In view of the characterization of these Euclidean wave functions (cf. VIII-(5)), we see that the following relations hold between the "fermi" and "bose" wave functions:

$$
\begin{gather*}
i\left\langle\psi_{-}^{*}\left(x^{*}\right) \varphi_{F}\left(a_{1} ; l_{1}\right) \cdots \varphi_{F}\left(a_{n} ; l_{n}\right) \psi_{+}(x)\right\rangle / \tau_{F n}(L) \tag{19}\\
=\left\langle\phi^{*}\left(x^{*}\right) \varphi_{B}\left(a_{1} ; l_{1}+1 / 2\right) \cdots \varphi_{B}\left(a_{n} ; l_{n}+1 / 2\right) \phi(x)\right\rangle / \tau_{B n}(L+1 / 2) \\
i\left\langle\varphi_{F}\left(a_{1} ; l_{1}\right) \cdots \varphi_{l_{\nu}^{*}}^{F}\left(a_{\nu} ; l_{\nu}\right) \cdots \varphi_{F}\left(a_{n} ; l_{n}\right) \psi_{+}(x)\right\rangle / \tau_{F n}(L) \tag{20}\\
=\left\langle\varphi_{B}\left(a_{1} ; l_{1}+1 / 2\right) \cdots \varphi_{l_{v}}^{B_{v}}(1 / 2\right. \\
\left(a_{\nu} ; l_{\nu}+1 / 2\right) \\
\left.\cdots \varphi_{B}\left(a_{n} ; l_{n}+1 / 2\right) \phi(x)\right\rangle / \tau_{B n}(L+1 / 2) .
\end{gather*}
$$

On the other hand, from (18) and VIII-(21) the "fermi" and "bose" τ-functions $\tau_{F n}(L)=\left\langle\varphi_{F}\left(a_{1} ; l_{1}\right) \cdots \varphi_{F}\left(a_{n} ; l_{n}\right)\right\rangle$ and $\tau_{B n}(L+1 / 2)$ are themselves related through

$$
\begin{equation*}
d \log \tau_{B n}(L+1 / 2)=-d \log \tau_{F n}(L)=-\omega \tag{21}
\end{equation*}
$$

where ω denotes the 1-form VIII-(20). For instance if $n=2$ we have

$$
\begin{equation*}
\omega=\left(t\left(\left(\frac{d \psi}{d t}\right)^{2}-\sinh ^{2} \psi\right)-t^{-1} l^{2} \tanh ^{2} \psi\right) d t / 2 \tag{22}
\end{equation*}
$$

where $t=2 m\left|a_{1}-a_{2}\right|, l=l_{1}-l_{2}$, and $\psi=\psi(t)$ satisfies

$$
\begin{equation*}
\frac{d^{2} \psi}{d t^{2}}+\frac{1}{t} \frac{d \psi}{d t}=\frac{1}{2} \sinh 2 \psi+\left(\frac{l}{t}\right)^{2} \tanh \psi \cdot \operatorname{sech}^{2} \psi . \tag{23}
\end{equation*}
$$

Equation (23) is converted into a Painlevé equation of the fifth kind by the substitution $y=\tanh ^{2} \psi, x=t^{2}$. By the boundary conditions $\tau_{B n}$, $\tau_{F n} \rightarrow 1\left(\left|a_{\mu}-a_{\nu}\right| \rightarrow \infty\right.$ for all $\left.\mu \neq \nu\right)$ (21) implies further that

$$
\begin{equation*}
\tau_{B n}(L+1 / 2) \cdot \tau_{F n}(L)=1 \tag{24}
\end{equation*}
$$

Introduction of the parameter $\Lambda=\left(\lambda_{\mu \nu}\right)$ is carried out similarly as in VII [5]. Let $\phi^{(\mu)}(u), \phi^{*(\mu)}(u)(\mu=1, \cdots, n)$ denote copies of $\phi(u), \phi^{*}(u)$. The inner product \langle,\rangle_{A} and the vacuum expectation value $\left\rangle_{A}\right.$ of μ-th and ν-th copies are set equal to $\lambda_{\mu \nu}=\lambda_{\nu \mu}$ times the original ones, where we assume $\lambda_{\nu \nu}=1(\nu=1, \cdots, n)$ as before. Define $\phi_{l}^{(\nu)}(x), \phi_{l}^{*(\nu)}(x)$, $\varphi_{B}^{(\nu)}(a ; l), \varphi_{l^{\prime}}^{B(\nu)}(a ; l)$ and $\varphi_{l^{\prime}}^{B^{*}(\nu)}(a ; l)$ by using $\phi^{(\nu)}(u), \phi^{*(\nu)}(u)$ in place of $\phi(u), \phi^{*}(u)$ respectively. We have then

$$
\begin{align*}
i\left\langle\psi_{-}^{*(\mu)}\left(x^{*}\right) \varphi_{F}^{(1)}\left(a_{1} ; l_{1}\right) \cdots \varphi_{F}^{(n)}\left(a_{n} ; l_{n}\right) \psi_{+}^{(\nu)}(x)\right\rangle_{A} / \tau_{F n}(L ; \Lambda) \tag{25}\\
=\left\langle\phi^{*(\mu)}\left(x^{*}\right) \varphi_{B}^{(1)}\left(a_{1} ; l_{1}+1 / 2\right)\right. \\
\left.\quad \cdots \varphi_{B}^{(n)}\left(a_{n} ; l_{n}+1 / 2\right) \phi^{(\nu)}(x)\right\rangle_{A} / \tau_{B n}(L+1 / 2 ; \Lambda)
\end{align*}
$$

$$
\begin{align*}
& i\left\langle\varphi_{F}^{(1)}\left(a_{1} ; l_{1}\right) \cdots \varphi_{l^{\prime}}^{F_{\mu}^{*}(\mu)}\left(a_{\mu} ; l_{\mu}\right) \cdots \varphi_{F}^{(n)}\left(a_{n} ; l_{n}\right) \psi_{+}^{(\nu)}(x)\right\rangle_{A} / \tau_{F n}(L ; \Lambda) \tag{26}\\
&=\left\langle\varphi_{B}^{(1)}\left(a_{1} ; l_{1}+1 / 2\right) \cdots \varphi_{l_{\mu} \mu_{\mu}(\mu) 1 / 2}\left(a_{\mu} ; l_{\mu}+1 / 2\right)\right. \\
&\left.\cdots \varphi_{B}^{(n)}\left(a_{n} ; l_{n}+1 / 2\right) \phi^{(\nu)}(x)\right\rangle_{A} / \tau_{B n}(L+1 / 2 ; \Lambda)
\end{align*}
$$

where $\quad \tau_{F n}(L ; \Lambda)=\left\langle\varphi_{F}^{(1)}\left(a_{1} ; l_{1}\right) \cdots \varphi_{F}^{(n)}\left(a_{n} ; l_{n}\right)\right\rangle_{\Lambda} \quad$ and $\quad \tau_{B n}(L+1 / 2 ; \Lambda)$ $=\left\langle\varphi_{B}^{(1)}\left(a_{1} ; l_{1}+1 / 2\right) \cdots \varphi_{B}^{(n)}\left(a_{n} ; l_{n}+1 / 2\right)\right\rangle_{A}$ are related through

$$
\begin{equation*}
\tau_{B n}(L+1 / 2 ; \Lambda) \tau_{F n}(L ; \Lambda)=1 \tag{27}
\end{equation*}
$$

4. In the special case $l=1 / 2$, it is possible to construct operator
theory based on neutral bose field $\phi(u)$. The field $\varphi_{B}(\alpha)$ is introduced in I [1] along with $\varphi_{F}(a)$ and $\varphi^{F}(\alpha)$. We set further

$$
\begin{equation*}
\operatorname{Nr}\left(\varphi_{ \pm}^{B}(a)\right)=\left(\int \underline{d u} \sqrt{0+i u^{ \pm 1}} e^{-i m(a-u+a+u-1)} \phi(u)\right) \cdot \operatorname{Nr}\left(\varphi_{B}(a)\right) . \tag{28}
\end{equation*}
$$

From the definition, $\varphi^{B}(a)=^{t}\left(\varphi_{+}^{B}(a), \varphi_{-}^{B}(a)\right)$ transforms as a spinor. It is shown that if a and a^{\prime} are mutually spacelike, then

$$
\begin{align*}
& {\left[\varphi_{B}(a), \varphi_{B}\left(a^{\prime}\right)\right]=0} \tag{29}\\
& {\left[\varphi_{s}^{B}(a), \varphi_{s^{\prime}}^{B}\left(a^{\prime}\right)\right]_{+}=0 \quad\left(\varepsilon, \varepsilon^{\prime}= \pm\right) .}
\end{align*}
$$

Moreover the asymptotic fields for $\varphi_{s}^{B}(\alpha)(\varepsilon= \pm)$

$$
\begin{align*}
\phi_{s \pm}^{B}(u)= & \in(u) \lim _{t \rightarrow \pm \infty} \frac{i}{2} \int_{x 0=t} d x^{1}\left(e^{i m(x-u+x+u-1)} \partial_{0} \varphi_{t}^{B}(x)\right. \tag{30}\\
& \left.-\varphi_{s}^{B}(x) \cdot \partial_{0} e^{i m(x-u+x+u-1)}\right)
\end{align*}
$$

exist and are calculated exactly. We find

$$
\begin{equation*}
\phi_{s \pm}^{B}(u)=(0+i u)^{s(1 / 2)} \psi_{ \pm}^{B}(u) \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Nr}\left(\psi_{ \pm}^{B}(u)\right)=\phi(u) \cdot \exp \left(-2 \int_{0}^{\infty} \underline{d u^{\prime} \theta}\left(\pm\left(|u|-u^{\prime}\right)\right) \phi^{+}\left(u^{\prime}\right) \phi\left(u^{\prime}\right)\right) \tag{32}
\end{equation*}
$$

satisfy the canonical anti-commutation relations $\left[\psi_{ \pm}^{B}(u), \psi_{ \pm}^{B}\left(u^{\prime}\right)\right]_{+}$ $=2 \pi|u| \delta\left(u+u^{\prime}\right)$ for free fermion (cf. I-(2)[1]). As in the case of $\varphi^{F}(a)$, the asymptotic state vectors are related to the auxiliary ones through

$$
\begin{align*}
& \langle v a c| \psi_{ \pm}^{B}\left(u_{1}\right) \cdots \psi_{ \pm}^{B}\left(u_{k}\right)=\prod_{i<j} \in\left(\pm\left(u_{i}-u_{j}\right)\right) \cdot\langle v a c| \phi\left(u_{1}\right) \cdots \phi\left(u_{k}\right) \tag{33}\\
& \psi_{ \pm}^{B \dagger}\left(u_{k}\right) \cdots \psi_{ \pm}^{B+}\left(u_{1}\right)|v a c\rangle=\prod_{i<j} \in\left(\pm\left(u_{i}-u_{j}\right)\right) \cdot \phi^{\dagger}\left(u_{k}\right) \cdots \phi^{\dagger}\left(u_{1}\right)|v a c\rangle
\end{align*}
$$

where $\psi_{ \pm}^{B \dagger}(u)=\psi_{ \pm}^{B}(-u)$.
To sum up, $\varphi^{B}(\alpha)=^{t}\left(\varphi_{+}^{B}(a), \varphi_{-}^{B}(a)\right)$ is a fermion field satisfying Lorentz covariance, microcausality and asymptotic completeness, and its S-matrix is given by $S=(-)^{N(N-1) / 2}$ where N denotes the total particle-number operator.

Just as in the complex case, the relation with the Euclidean deformation theory enables us to express the τ-functions for $\varphi_{B}(a)$ and $\varphi^{B}(a)$ in a closed form. The analogue of (24) reads

$$
\begin{equation*}
\tau_{B n} \cdot \tau_{F n}=\sqrt{\operatorname{det} \cosh H} \tag{34}
\end{equation*}
$$

where $\tau_{B n}=\left\langle\varphi_{B}\left(a_{1}\right) \cdots \varphi_{B}\left(a_{n}\right)\right\rangle, \tau_{F n}=\left\langle\varphi_{F}\left(a_{1}\right) \cdots \varphi_{F}\left(a_{n}\right)\right\rangle$, and $G=e^{-2 H}$ denote the corresponding solution of II-(18) [2]. The mixed τ-functions

$$
\begin{equation*}
\hat{\tau}_{B n ; \mathrm{c}_{1}, \cdots, \iota_{m}}^{\nu_{1}, \ldots \nu_{m}}=\left\langle\varphi_{B}\left(a_{1}\right) \cdots \varphi_{t_{1}}^{B}\left(a_{\nu_{1}}\right) \cdots \varphi_{c_{m}}^{B}\left(a_{\nu_{m}}\right) \cdots \varphi_{B}\left(a_{n}\right)\right\rangle / \tau_{B n} \tag{35}
\end{equation*}
$$

where $\varphi_{s_{i}}^{B}\left(\alpha_{\nu_{i}}\right)$ is placed in the ν_{i}-th position for $i=1, \cdots, m$, are given by (cf. IV-(49)[2])
(36)

$$
\hat{\tau}_{B n ; \ldots 1, \cdots, \ldots, \iota_{m}}^{\nu_{1}, \ldots, \nu_{m}}=\text { Hafnian }\left(\hat{\tau}_{B n ; j, j, j, v_{k}, \varepsilon_{k}}^{\nu}\right)_{j, k=1, \ldots, m} .
$$

Here

$$
\begin{align*}
& \hat{\tau}_{B n ;++}^{\mu \nu}=\overline{\hat{\tau}_{B n ;--}^{\mu \nu}}=-f_{\mu \nu} / 2 m\left(a_{\mu}-a_{\nu}\right) \tag{37}\\
& \hat{\tau}_{B n ;+-}^{\mu \nu}=\hat{\tau}_{B n ;-+}^{\mu \nu}=-g^{\mu \nu} / 2
\end{align*}
$$

with $\mu \neq \nu$ and $F=\left(f_{\mu \nu}\right), G^{-1}=e^{2 H}=\left(g^{\mu \nu}\right)$. In particular the 2-point functions are expressible in terms of the solution $\psi(t)=\psi(t ; 0,1 / \pi)$
in reference [9] of the equation (23) with $l=0$. Setting $a_{1}-a_{2}=t e^{i \theta} / 2 m$ $(t>0)$ we have
(38)

$$
\begin{gather*}
\tau_{B 2} \cdot \tau_{F 2}=\cosh (\psi(t) / 2) \\
\binom{\left\langle\varphi_{+}^{B}\left(a_{1}\right) \varphi_{+}^{B}\left(a_{2}\right)\right\rangle\left\langle\varphi_{+}^{B}\left(a_{1}\right) \varphi_{-}^{B}\left(a_{2}\right)\right\rangle}{\left\langle\varphi_{-}^{B}\left(a_{1}\right) \varphi_{+}^{B}\left(a_{2}\right)\right\rangle\left\langle\varphi_{-}^{B}\left(a_{1}\right) \varphi_{-}^{B}\left(a_{2}\right)\right\rangle}=\left(\begin{array}{cc}
-i e^{-i \theta} \psi^{\prime}(t) & -i \sinh \psi(t) \\
i \sinh \psi(t) & i e^{i \theta} \psi^{\prime}(t)
\end{array}\right) \tau_{B 2} / 2 \tag{39}
\end{gather*}
$$ where $\psi^{\prime}(t)=\frac{d \psi}{d t}$.

References

[1] M. Sato, T., Miwa, and M. Jimbo: Proc. Japan Acad., 53A, 6-10 (1977).
[2] ——: Ibid., 53A, 147-152, 153-158, 183-185 (1977).
[3] ——: Ibid., 53A, 219-224 (1977).
[4] ——: Ibid., 54A, 1-5 (1978).
[5] ——: Ibid., 54A, 36-41 (1978).
[6] -: RIMS preprint, no. 258 (1978).
[7] -: Publ. RIMS 14, 223-267 (1977).
[8] ——: RIMS preprint, no. 248 (1978).
[9] B. M. McCoy, C. A. Tracy, and T. T. Wu: J. Math. Phys., 18, 1058-1092 (1977).

