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1. Introduction. Let X be a Banach space and let X* be the
dual space of X. The value of z* ¢ X* at x ¢ X will be denoted by
(z, x*). The duality mapping F (multi-valued) from X into X* is de-
fined by

F@)={x* e X*: (x, x*)=| x| and || z*||=] 2|} for z ¢ X.

We say that X is smooth, if lim,_, t~'(|z +ty|—| z|) exists for every x
and y with ||z||=|y||=1. F is single-valued if and only if X is smooth.
The duality mapping F of a smooth Banach space X is said to be
weakly continuous at 0 if w-lim,_. x,=0 in X implies that {F(z,)}
converges weakly* to 0 in X*, where w-lim,_.. x, denotes the weak
limit of {x,}. It is easy to see that Hilbert space and (I?), 1<p<co,
have this property.

Throughout the rest of this paper it is assumed that X is a smooth
and uniformly convex real Banach space having the duality mapping
F which is weakly continuous at 0, and C is a nonempty closed convex
subset of X. By T e Cont(C) we mean that T is a nonexpansive
mapping from C into itself, i.e., T: C—C satisfies |Tx—Ty||=Z|z—¥|
for all #,y e C. The set of fixed-points of T will be denoted by <(T).

In [5], Z. Opial proved the following: Let T ¢ Cont (C) and x € C.
If F(T)+#¢andlim, .., | T —T"x||=0, then the sequence {T"x} is weakly
convergent to an elemet of F(T). (Let F, be a duality mapping of X
into X* with gauge function p (see [5]). We note here that F, is
weakly continuous at 0 if and only if F is weakly continuous at 0.)
The purpose of this note is to prove the following

Theorem. Let T e Cont(C) andxecC. Then w-lim,_, T"x exists
if and only if F(T)#¢ and w-lim,_,, (T""'x—Trx)=0. Moreover w-
lim,_. T"x ¢ F(T) if the weak limit exists.

In the case that X is a Hilbert space, the theorem has been ob-
tained by R. E. Bruck [2].

2. Proof of Theorem. In the preceding paper [4] the author
proved the following : Let T € Cont (C) and x ¢ C. Then w-lim,_., T"x
exists if and only if F(T)#¢ and w,(x) CH(T), where w,(x) denotes
the set of weak subsequential limits of {T"x}. Therefore to prove
Theorem it suffices to show the following
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Proposition. Let T ¢ Cont (C) and xc C. If

1) w-lim,_. (T**'x—T"x)=0,
then w,(x) CF(T).

Recall that X is called uniformly convex if the modulus of con-
vexity

d@)=inf {1—(lz+y|/2: [z|=1, |¥[|=1 and ||z —y|=¢}
is positive for every ¢ with 0<e<2. Let «>0. It is easily seen that
for every ¢ with 0<¢c<2«

@ |z[=a, |yll=aand [|[z—y||=e imply |2+ ¥ (/2= a(l—d(e/a)).

Let {z,} be a bounded sequence in C. Then there exists a unique
point ¢ € C such that

lim sup,_.. |, —¢||<lim sup,_., || %, — || for x € C\{c}.
(See [3].) The point ¢ is called the asymptotic center of {x,} with
respect to C. By the weak continuity of F at 0 we have the following
(see [4, Lemma (b)]):

(3) Let {x,} be a sequence in C. If w-lim,_. x, exists, then the
weak limit is the asymptotic center of {x,} with respect to C.

Proof of Proposition. Letu € w,(x). Then there is a subsequence
{n;} of {n} such that w-lim,_,, T*x=u. By (1) we have

w-lim,,_,, T™ ™=y for every nonnegative integer m.
It follows from (3) that for every m =0, u is the asymptotic center of
{Tmetmy s k=1,2, - ..} with respect to C. Consequently
@) limsup,.. || Tz —u||<lim sup,_., | T ™x—2z]||
for ze¢ Cand m=0,1, - ...
Put
rn=lim sup,._. | T ™z —ul| for m=0,1,2, -.-.
Then by (4) and T € Cont (C) we have
Pm e =1im SUp,_., | T ™ 'y —u || <lim sup,_., | 7™ ™+ — Tul|
<lim sup,_., | T™* ™z —u|=1r, for m=0,1,2, -- ..
Therefore {r,} is convergent to r=inf {r,, : m =0}.
We now prove that u is a fixed-point of T. First, let»=0. Since
[(—Tu, 2*)| <2 [|a* ||| T™ ™a —w|+ (T " — T " g, 2%))
for x* € X*,
it follows from (1) that
[(w—Tu, x*)| <2 [|[@* || lim sup.., | T "z —u||=2||a*| 7y,
for every «* ¢ X* and m=0. By lim,,_.. 7,,=7r=0 we have
(w—Tu, 2*)=0 for every «* ¢ X*, i.e., Tu=1u.

Next, let »>0. We use the same argument as in the proof of
Theorem in [1]. To prove u e %F(T) it suffices to show that | T7u—u||
—0asp—co. Suppose, for contradiction, that the sequence {|| T'7u—wu||}
does not converge to 0. Then there is a d>0 and a subsequence {p,}
of {p} such that »=d and | T"u—u|=d for all j=1. We can choose
an g>0 such that (r+e)[1—o6(d/(r+e))1<r. By r=lim,_. 7, there
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exists a positive integer m, such that

lim sup;_.., | T™ ™ —ul|=1r,<r-+e¢ for m=m,.
Therefore for every m=m, there exists a positive integer k(m) such
that

B) Ty —u||<r+e, for every k=k(m).

Take an integer j >0 with p,=m, By (5) we have that
(| TPsy— Tt 201 || < || — T 2o || <1+ g for k=k(p,)
and
lu— T+ 2pig || <7 e for k=k(@2p,).
Since ||(T?u— T+ 2P1g) — (u— T+ 2P1g) || =|| T*u—u| =d, it follows from
(2) that
|| Tt 22150 — (u+ TPr0) |2

=|| (TP — T™**ix) 4 (u— T 2Pig)|| /2

Sr+e)l—od/(r+e))]  for k=max {k(p)), k(2p,)},
and hence

lim sup,._... || T%* g — (u+ T?u) |2|| S (r +e)[1 —6(d [ (r + e < 7.
Since u is the asymptotic center of {T™+??ix; k=1, 2, . - -} with respect
to C, we have

Top,=lim sUp,_.., || T+ P78 —u|
<lim sup,_.., | T™**Pig — (u+ T?u) /2| <7.
This contradicts »=inf {r,,: m=0}. Therefore ||T?u—u|—0 as p—oo
and hence u € F(T). Q.E.D.

3. An extension of Theorem. A mapping T:C—C is called
asymptotically nonexpansive if there exists a sequence {a,} of positive
numbers with lim,_., a,=1 such that

| Tre—T "y || a, || —Y| for z,y e C and n=1,2, - - -.
S. C. Bose [1] has extended Opial’s theorem (which is stated in Intro-
duction) to the case of asymptotically nonexpansive mapping. We
can also extend our Theorem to the following form :

Theorem’. Let T : C—C be an asymptotically nonexpansive map-
ping and let x € C. Then w-lim,_. T"x exists if and only if F(T)+¢
and w-lim,_.. (T*"*"'—T*x)=0. Moreover w-lim,_. T"x € F(T) if the
weak limit exists.

Sketch of Proof. It suffices to prove the following (a) and (b):

(a) w-lim,_.. T exists if and only if F(T)+¢ and w,(x) CF(T) ;

(b) if w-lim,_. (T""'x—T"x)=0 then w,(x) CF(T).

A proof of (a) may be found in [1]. To prove (b), let w-lim,_., T"x
=u and put r,=1im sup,_.. | T**"x—u| for m=0. Noting that u is
the asymptotic center of {T™*™x; k=1,2, .-} with respect to C for
every m=0 and T is asymptotically nonexpansive, we have

P <lim sup,_,, | T ™ e —Tu|< e’ for m=0 and 1=0.

It follows from lim,_.. a,=1 that lim sup,_.. 7,=lim sup;.. 7'n <7, for
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m=0. Thus limsup,.. r,<liminf,_. r,, and therefore {r,} is con-
vergent. Put r=lim,_.r,. Then, using the same argument as in
the proof of Proposition, we obtain that < F(T). (In this case, re-
place “r,, <r+-¢, for m=m,” in the proof of Proposition by “r, < -4e/2
for m=m,”’. After this our argument is as follows. For every m>=m,
there is an integer k(m)>0 such that | T ™ —u || <7 +&/2 for k= k(m).
Choose an integer j,>0 such that p;,;=m, and a,,(r+5/2)<r+¢, for
j=j,. We have that | T?u— T 7| <a, (r+&/2) <r+e for k=k®,)
and j=j,, and ||u— T 2ig||<r4e¢, for k=k(@2p,;). These and || TPu—u|
=d yield || T™**ix—(u+ TPu) /2| < (1 +e)[1—0(d/(r +¢&))] for kE=max
{k(py), k2p,)} and j=j,.  Therefore 7, <limsup,.. [T ?x—(u
+T7) 2| <(r+e[1—0(d/(r+e))] (<r) for j=j7,. This contradicts
r=lim,,_, 7,.)
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