By Yukinobu YAJIMA

Department of Mathematics, Kanagawa University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 16, 1979)

1. Introduction. R. Telgársky and Y. Yajima [6] have studied the structural properties of order star-finite covers and order locally finite covers. Moreover, in [6], they have proved the closure-preserving sum theorem for covering dimension; if a normal space X has a closure-preserving closed cover \mathfrak{F} such that F is countably compact and dim $F \leq n$ for each $F \in \mathfrak{F}$, then dim $X \leq n$. This paper is a continuation of [6]. We first give a characterization of paracompact spaces in terms of order star-finiteness which is a generalization of star-finiteness. Secondly, using this result, we state a relation between order star-finite covers and order locally finite covers. Finally, we show that the closure-preserving sum theorem for large inductive dimension, as well as the above one, holds. All spaces are assumed to be Hausdorff spaces. N denotes the set of all natural numbers.

2. Order star-finite covers. A family $\{A_{\lambda}: \lambda \in \Lambda\}$ of subsets of a space X is said to be order star-finite [4] (order locally finite [1]), if one can introduce a well-ordering < in the index set Λ such that for each $\lambda \in \Lambda$ the set A_{λ} meets at most finite many A_{μ} with $\mu < \lambda$ (the family $\{A_{\mu}: \mu < \lambda\}$ is locally finite at each point of A_{λ}). Then we may use, without loss of generality, the notation $\{A_{\xi}: \xi < \alpha\}$ instead of $\{A_{\lambda}: \lambda \in \Lambda\}$.

Proposition 1. Every point-finite open cover of a collectionwise normal space X has an order star-finite open refinement.

Proof. We modify the proof of E. Michael ([2], Theorem 2). Let $\mathfrak{U}_{\lambda}: \lambda \in \Lambda$ be a point-finite open cover of X. For $k \in N$, let Λ_k be the family of all $\gamma \subset \Lambda$ such that γ has exactly k elements. We shall construct a sequence $\{\mathfrak{B}_i: i \in N\}$ of families of open sets of X, where $\mathfrak{B}_i = \{V_r: \gamma \in \Lambda_i\}$, satisfying the following conditions:

- (1) Cl $V_{\gamma} \subset \bigcap_{\lambda \in \gamma} U_{\lambda}$ for each $\gamma \in \Lambda_i$.
- (2) \mathfrak{V}_i is discrete for each $i \in N$.
- (3) $\{\delta \in \bigcup_{j=1}^{i-1} \Lambda_j : V_\delta \cap V_r \neq \emptyset\}$ is finite for each $\gamma \in \Lambda_i$.

(4) If $x \in X$ is an element of at most *i* elements of $\mathbb{1}$, then $x \in \bigcup_{j=1}^{i} V_j$, where $V_j = \bigcup \{V_r : \gamma \in \Lambda_j\}$.

Assume that $\mathfrak{B}_i = \{V_{\tau} : \tau \in \Lambda_i\}$ $(i=1, \dots, k)$ have been constructed to satisfy (1)-(4) for all $i \leq k$. For each $\tau \in \Lambda_{k+1}$, let $F_{\tau} = (X \setminus \bigcup_{i=1}^k V_i) \cap (X \setminus \bigcup \{U_{\lambda} : \lambda \notin \tau\})$. Then it follows from [2] that $\{F_{\tau} : \tau \in \Lambda_{k+1}\}$ is a

Y. YAJIMA

discrete family of closed subsets of X such that $F_{\tau} \subset \bigcap_{\lambda \in \tau} U_{\lambda}$. Let $\gamma \in A_{k+1}$ and $\delta \in \bigcup_{i=1}^{k} A_{i}$ with $\delta \not\subset \gamma$. Then it is easy to show from (1) and the definition of F_{τ} that F_{τ} cannot intersect $\operatorname{Cl} V_{\delta}$. Since $\bigcup_{i=1}^{k} \mathfrak{V}_{i}$ is locally finite in X, we have $F_{\tau} \cap \operatorname{Cl} (\bigcup \{V_{\delta} : \delta \in \bigcup_{i=1}^{k} A_{i}, \delta \not\subset \gamma\}) = \emptyset$. So, by collectionwise normality of X, we can choose a discrete family $\mathfrak{V}_{k+1} = \{V_{\tau} : \gamma \in A_{k+1}\}$ of open sets such that $F_{\tau} \subset V_{\tau} \subset \operatorname{Cl} V_{\tau} \subset \bigcap_{\lambda \in \tau} U_{\lambda}$ and $V_{\tau} \cap \bigcup \{V_{\delta} : \delta \in \bigcup_{i=1}^{k} A_{i}, \delta \not\subset \gamma\} = \emptyset$. Then $\{\delta \in \bigcup_{i=1}^{k+1} A_{i} : V_{\tau} \cap V_{\delta} \neq \emptyset\} \subset \{\delta : \delta \subset \gamma\}$ holds. Hence $\mathfrak{V}_{i} = \{V_{\tau} : \gamma \in A_{i}\}$ $(i=1, \cdots, k+1)$ satisfy (1)-(3) for all $i \leq k+1$. Further, as in [2], they satisfy (4) for all $i \leq k+1$. Here, it is easy to verify from (1)-(4) that $\bigcup_{i=1}^{\infty} \mathfrak{V}_{i}$ is an order starfinite open refinement of \mathfrak{U} . The proof is completed.

The following result holds from Lemma 2 in [1] and Proposition 1.

Theorem 1. For a regular space X, the following are equivalent.

(a) X is a paracompact space.

(b) Every open cover of X has an order locally finite open refinement.

(e) Every open cover of X has an order star-finite open refinement.

Prof. R. Telgársky suggested, kindly, the following result to the author. Using our Theorem 1 and his technique in the proof of Lemma 1 in [4], we can obtain it.

Theorem 2. Let $\{E_{\xi}: \xi < \alpha\}$ and $\{U_{\xi}: \xi < \alpha\}$ be order locally finite covers of a paracompact space X, where E_{ξ} is closed in X and U_{ξ} is an open neighborhood of E_{ξ} for each $\xi < \alpha$. Then there exist order starfinite covers $\{F_{\eta}: \eta < \beta\}$ and $\{V_{\eta}: \eta < \beta\}$ of X, where $\{F_{\eta}: \eta < \beta\}$ refines $\{E_{\xi}: \xi < \alpha\}, \{V_{\eta}: \eta < \beta\}$ refines $\{U_{\xi}: \xi < \alpha\}, F_{\eta}$ is closed in X and V_{η} is an open neighborhood of F_{η} for each $\eta < \beta$.

Proof. For each $\xi \leq \alpha$, we can construct order star-finite and locally finite families $\{E_{\varepsilon,\zeta}: \zeta \leq_{\varepsilon}\beta_{\varepsilon}\}$ and $\{U_{\varepsilon,\zeta}: \zeta \leq_{\varepsilon}\beta_{\varepsilon}\}$ such that $\{E_{\varepsilon,\zeta}: \zeta \leq_{\varepsilon}\beta_{\varepsilon}\}$ is a closed cover of E_{ε} , $U_{\varepsilon,\zeta}$ is open in X, $E_{\varepsilon,\zeta} \subset U_{\varepsilon,\zeta} \subset U_{\varepsilon}$ and $\{(\eta, \nu): \eta \leq \xi, \nu \leq_{\eta}\beta_{\eta} \text{ and } U_{\eta,\nu} \cap U_{\varepsilon,\zeta} \neq \emptyset\}$ is a finite set for each $\zeta \leq_{\varepsilon}\beta_{\varepsilon}$. Then the families $\{E_{\varepsilon,\zeta}: \zeta \leq_{\varepsilon}\beta_{\varepsilon}, \xi \leq \alpha\}$ and $\{U_{\varepsilon,\zeta}: \zeta \leq_{\varepsilon}\beta_{\varepsilon}, \xi \leq \alpha\}$ are order star-finite. So, we rewrite them $\{F_{\eta}: \eta \leq \beta\}$ and $\{V_{\eta}: \eta \leq \beta\}$, respectively. Then $\{F_{\eta}: \eta \leq \beta\}$ and $\{V_{\eta}: \eta \leq \beta\}$ satisfy all the conditions in Theorem 2. The proof is complete.

3. Closure-preserving covers. The following lemma is well-known (e.g., [3], Proposition 4.4.11).

Lemma 1. Let A be a closed subset of a totally normal space X with $\operatorname{Ind} A \leq n$. If $\operatorname{Ind} F \leq n$ for each closed subset F of X such that $F \cap A = \emptyset$, then $\operatorname{Ind} X \leq n$.

Now we make use of the topological game $G(\mathbf{K}, X)$ introduced and studied by R. Telgársky [5]. Let $\operatorname{Ind}_n = \{Y : Y \text{ is normal and Ind } Y \leq n\}$.

Proposition 2. Let X be a totally normal space. If a Player I

has a winning strategy in $G(\operatorname{Ind}_n, X)$, then $\operatorname{Ind} X \leq n$.

Proof. The idea of the proof is essentially due to that of R. Telgársky ([5], Theorem 11.1). Let s be a winning strategy of Player I in $G(\operatorname{Ind}_n, X)$. Now let E and F be closed subsets of X with $F \subset E$. Since X is totally normal, there is a sequence $\{\mathfrak{S}_i(E, F) : i \in N\}$ of families of closed subsets of X such that

(1) \cup { $H: H \in \mathfrak{S}_i(E, F), i \in N$ } $= E \setminus F$ and

(2) $\mathfrak{S}_i(E, F)$ is locally finite in $E \setminus F$ for each $i \in N$.

Fix $m \in N$ and $i_0, \dots, i_m \in N$. Let $T(i_0, \dots, i_m)$ be the set of all admissible sequences $(E_0^{i_0}, E_1^{i_0}, \dots, E_{2m-1}^{i_m-1}, E_{2m}^{i_m})$ for $G(\operatorname{Ind}_n, X)$ such that

(3) $E_0^{i_0} = X$ and $E_1^{i_0} = s(X)$ for each $i_0 \in N$,

(4) $E_{2k+1}^{i_k} = s(E_0^{i_0}, E_1^{i_0}, \cdots, E_{2k-1}^{i_{k-1}}, E_{2k}^{i_k})$

and

(5) $E_{2k+2}^{i_{k+1}} \in \mathfrak{S}_{i_{k+1}}(E_{2k}^{i_k}, E_{2k+1}^{i_k})$ for $k=0, \dots, m-1$.

Put $\mathfrak{S}(i_0, \dots, i_m) = \{E_{2m}^{i_m} : (E_0^{i_0}, E_1^{i_0}, \dots, E_{2m-1}^{i_m-1}, E_{2m}^{i_m}) \in T(i_0, \dots, i_m)\}$ and $s\mathfrak{S}(i_0, \dots, i_m) = \{s(E_0^{i_0}, E_1^{i_0}, \dots, E_{2m-1}^{i_m-1}, E_{2m}^{i_m}) : (E_0^{i_0}, E_1^{i_0}, \dots, E_{2m-1}^{i_m-1}, E_{2m}^{i_m})\}$ $\in T(i_0, \dots, i_m)\}.$ Moreover, let $X(i_0, \dots, i_m)$ be the union of all elements of $s\mathfrak{S}(i_0, \dots, i_m)$. Here, we define $X_k = \bigcup \{X(i_0, \dots, i_m) : m \in N, i_0 + \dots + i_m \leq k\}$. First, we can see from (2) and (5) that for each $i_0, \dots, i_m \in N$, $\dots, i_m \in N$,

(6) $\mathfrak{S}(i_0, \dots, i_m)$ is locally finite in $X \setminus \bigcup_{j=1}^{m-1} X(i_0, \dots, i_j)$.

Now we shall show the following three facts;

- (7) X_k is closed in X,
- (8) Ind $X_k \leq n$ for $k=0, 1, \cdots$

and

 $(9) \quad \bigcup_{k=0}^{\infty} X_k = X.$

 X_0 is clearly closed in X and assume that X_k is closed in X. Let $x \notin X_{k+1}$. Take any $i_0, \dots, i_m \in N$ with $i_0 + \dots + i_m = k+1$. Then we obtain $x \in X \setminus \bigcup_{j=1}^{m-1} X(i_0, \dots, i_j)$. By (6), $s \mathfrak{S}(i_0, \dots, i_m)$ is locally finite at x. Hence we have $x \notin \operatorname{Cl} X(i_0, \dots, i_m)$. From the inductive assumption, $x \notin \operatorname{Cl} X_{k+1}$ holds. Thus, (7) is true. Clearly, $\operatorname{Ind} X_0 \leq n$, and assume that $\operatorname{Ind} X_k \leq n$ holds. Let *H* be a closed subset in X_{k+1} with $H \cap X_k = \emptyset$. Then, by (6), $\{H \cap E : E \in s\mathfrak{S}(i_0, \dots, i_m), i_0 + \dots + i_m\}$ =k+1 and $m \in N$ is a locally finite closed cover of H. By the locally finite sum theorem for Ind, we have Ind $H \leq n$. From (7), the inductive assumption and Lemma 1, Ind $X_{k+1} \leq n$ holds. Thus, (8) is true. Let $x \notin \bigcup_{k=0}^{\infty} X_k$. Then, there is a sequence $\{i_0, i_1, \dots\}$ of N such that we can choose some $E_{2m}^{i_m} \in \mathfrak{S}(i_0, \dots, i_m)$ with $x \in E_{2m}^{i_m}$ for $m = 0, 1, \dots$ Moreover, the countable many admissible sequences $\{(E_0^{i_0}, E_1^{i_0}, \cdots,$ $E_{2m-1}^{i_{m-1}}, E_{2m}^{i_{m}}$: $m \in N$ } yield a play $(E_{0}^{i_{0}}, E_{1}^{i_{0}}, E_{2}^{i_{1}}, E_{3}^{i_{1}}, \cdots)$ in $G(\operatorname{Ind}_{n}, X)$, where each $E_{2k+1}^{i_k}$ is chosen to satisfy (4). Since s is a winning strategy

No. 1]

of Player I in $G(\operatorname{Ind}_n, X)$, we have $\bigcap_{m=0}^{\infty} E_{2m}^{im} = \emptyset$. This is a contradiction. Thus, (9) is true. From (7)-(9) and the countable sum theorem for Ind, Ind $X \leq n$ holds. The proof is completed.

DK denotes the class of all spaces Y which have a discrete closed cover $\{Y_{\lambda}: \lambda \in A\}$ with $\{Y_{\lambda}: \lambda \in A\} \subset K$ (cf. [5]).

Lemma 2 (Telgársky and Yajima [6]). If a space X has a closurepreserving closed cover \mathfrak{F} such that F is countably compact and $F \in K$ for each $F \in \mathfrak{F}$, then Player I has a winning strategy in G(DK, X).

The following theorem holds from Proposition 2 and Lemma 2.

Theorem 3. If a totally normal space X has a (σ -)closure-preserving closed cover \mathfrak{F} such that F is countably compact and $\operatorname{Ind} F \leq n$ for each $F \in \mathfrak{F}$, then $\operatorname{Ind} X \leq n$.

References

- Y. Katuta: A theorem on paracompactness of product spaces. Proc. Japan Acad., 43, 615-618 (1967).
- [2] E. Michael: Point-finite and locally finite covers. Canad. J. Math., 7, 275– 279 (1955).
- [3] A. R. Pears: Dimension Theory of General Spaces. Cambridge University Press (1975).
- [4] R. Telgársky: Closure-preserving covers. Fund. Math., 75, 165-175 (1974).
- [5] ——: Spaces defined by topological games. Ibid., 88, 193-223 (1975).
- [6] R. Telgársky and Y. Yajima: On order locally finite and closure-preserving covers. Ibid. (in press).