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Non.Immersion and Non.Embedding Theorems
for Complex Grassmann Manifolds*

By Tamio SUGAWARA
Department of Mathematics, Kyushu University

(Communicated by Kunihiko. KODAIRA, M. $. A., Feb. 13, 1979)

Introduction. The purpose o the present paper is to prove non-
immersion and non-embedding theorems or the complex Grassmann
manifolds G,_=U(n)/U(t) U(n-tc) by making use of an index
theorem due to Atiyah-Hirzebruch [1]. We denote byXR (or XR)
the existence o immersion (or embedding) of a differentiable manifold
X into the Euclidean space R respectively. Let a(q) denote the number
of l’s in the dyadic expansion of an integer q. Then our results are
stated as ollows

Main Theorem. Let 2m=2k(n-k) be the dimension of G,n_ and
let r==l((n-])-(]-l)). Then,

(a) (i) G,__R-, (ii) G,n_ZR4--.
(b) If n is odd, then m=k(n-k) is even and
(i) if r=_3 (rood4) then G,n_R4-+,
(ii) if r----2 or 3 (mod4) then G,_ZRt-+,

if r= 1 (mod 4) then G,.n_ R4m-er.
These are generalizations of results or complex projective spaces

investigated by Atiyah-Hirzebruch [1], Sanderson-Schwarzenberger
[5] and Mayer [4] and o the results for some complex Grassmann
manifolds obtained by Sugawara [6].

This paper is arranged as tollows. In 1, the index theorem for
immersion and embedding due to Atiyah-Herzebruch [1] and Mayer
[4] are recalled. 2 is devoted to show the computability of some
Todd genus for complex homogeneous spaces G/U. We prove Main
Theorem in 3 and exhibit Table I of r or some n and k.

The author wishes to express his hearty gratitude to Professor
M. F. Atiyah or enlightening discussions.

1. Index theorems. Let XTM be a closed connected oriented
differentiable manifold o 2m dimension. Let {(p,p,...,pC)} be
the multiplicative sequence of polynomials [3, 1] with (z/2)/sinh (z/2)
as characteristic power series nd let (X) be the cohomology class
/A(p() p()) of the tangent bundle r(X) oi X. For anyj=O

z e H*(X, Q) and d e H(X, Q), we define/t(X, d, z)-{ze(X)}[X]. Let
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Table I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 2

22
2 2 3 2 2

2 3 33 3 2

3 4 5 4 5 4 3
k

3 4 44 4 3
k

2 2 4 4 5 4 4 2 2

2 3 3 4 55 4 3 3

3 4 5 4 6 6 6 4 5
k

2 4 5 5 5 66 5 5

3 4 6 6 7 6 7 6 7
k

3 5 6 7 8 8 7x7 8
k

4 6 8 8 10 10 10 8 10

4 6 7 8 9 9 88 9
k

2 2 5 6 8 8 9 8 9 8

3 3 5 7 8 8 8 992

3 4 5 4 7 8 9 8 10

2 4 5 5 5 7 8 8 9

3 4 6 6 7 6 8 8 10

3 5 6 7 8 8 7 8 10

4 6 8 8 10 10 10 8 11

2 5 7 8 9 10 10 9 9

Table of r

r= ((n-])-(]- 1))

2

4 3

5 4 2

6 6 4

8 7 6

10 10 8

9 8

9 8

8 8

10 10 8

1010 9

10 11 10

11 1111
12 13 12

11 12 12

3

5 3

8 6 4

7 6 4

8 6 5

8 7 5

9 8 7

8 8 7

10 8 8

11 10 8

13 12 11

12 12 11

ch(X) be the subring of H*(X, Q), the image of Chern character
ch K(X) H*(X, Q). For an element z oz e ch(X) with

z e H(X, Q), we write z(t)=y__ozt where t is an indeterminate.
The Hilbert polynomial H(t) with respect to z e ch(X) and d H(X, Z)
is defined (Atiyah-Hirzebruch [1, 2.5]) as 2ollows"
(1.1) H(t)-- A(X, d/2, z(t)) {z(t)e/,(X)}[X].
We denote by ,(k) the (positive or negative) exponent of a prime p in
a rational number k, that is, k ]-I P(). For the next theorem, see
Atiyah-Hirzebruch [1, 2.6], Sanderson-Schwarzenberger [5, Theorem
4] and Mayer [4, 4.3].
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and let H(t) be the Hilbert polynomial with respect to z e ch(X) and
d e H(X, Z). Let r=2m +,(H(1/2)), then

(i) XqtR-, (ii) X R--.
When the dimension of X is divisible by four, Mayer [4, 4.3] im-

proved above theorem. Let chO(X) be the subring of ch(X), the
image of Chern character composed with the complexification c KO(X)
-K(X).

Theorem 1.2. Let 2m be the dimension of X with m even and let
H(t)= (X, O, z(t)) be the Hilbert polynomial with respect to z e chO(X)
and d=0. Let r=2m+,(H(1/2)), then

(i) if r=_3 (mod4) thenXgR-/

(ii) if r=_2 or 3 (mod4) then XR’-/
if r_= 1 (mod 4) then X_R-If X is moreover endowed with an almost complex structure, then

the Todd class (X) can be defined as the cohomology class ,=o T(c(),
.., c()) of the tangent bundle =r(X) where {T(c,..., c)} is the

Todd multiplicative sequence of polynomial [3, 1] with x/(1-e-) as
its characteristic power series. In this. case choosing d=c(X) the
first Chern class of X, (1.1) is rewritten as.
(1.2) H(t)= {zt)y(X)}[X]
since ff(D--exp (c()/2)() holds for any complex vector bundle .

2. Complex homogeneous space G/U. Let G be a compact
connected Lie group and U its closed subgroup of the centralizer of a
torus of G. Then U contains, a maximal torus T of G and by H. C.
Wang G/U is. a homogeneous, complex manifold (Borel-Hirzebruch
[2, 13.5]). Let V be the universal covering space of T and z: V-T
be the projection. Let F=-l(e) be the lattice point set where e e T is
the unit element. Then the subgroup of the dual space V*=Hom (V, R),
consisting of all the functions e V* which takes the value in the inte-
gers ZcR on F, is identified with the cohomology group H(T, Z) and
the latter is identified with the cohomology group H(G/T, Z) by the
negative transgression. Hence roots, or weights of any representation
of G are regarded as elements, o H(G/T, Z) [2, 10]. The ollowing
two theorems, play the essential role in computation of H(t).

Theorem 2.1 (Borel-Hirzebruch [2, 24.7]). Let be a set of
roots giving the complex structure of G/U. Let fl b,e a weight ortho-
gonal to the roots of U and (fl, )0 for all e , where (,) denotes
the bilinear form induced from the Killing form. Then the Todd
genus T(G/U, fl)--{e(G/U)}[G/U] is equal to the dimension of the
irreducible representation with the highest weight ft.

Theorem 2.2 (Weyl’s. dimension formula). Let V be an irreducible
representation space with the highest, weight . Then
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[I +*, (*, *=
aO /a>O aO

Combining hese wo heorems, he ilbe polynomial
respect to z=e and d=c(X) is obtained as

(2.1) H(t)= (tfl + , a)// (, a)

where the multiplication runs through over the positive complementary
roots a e , since (fl, a)= 0 if a is a root of U by orthogonality.. Complex Grassmann manifolds. In this. section, we give the
proof o Main Theorem. Let U(k)z U(n-k)U(n)G,_ be the
natural principal bundle and let {,{ be the associated vector bundle.
Denoting c= c({,) (or c--c({))the i-th Chern class of (or {) respec-
tively, we have

H*(G,_, Z)--Z[c,, c, ., c, c, c_]/J+

where J+ is an ideal generated by the elements {+= cc k>0}.
Let F(n) be the complex flag maniold U(n)/T where T is a max-

imal torus of U(n). Let TnU(n)F(n) be the natural principal
bundle and let ...$ be the associated vector bundle. Denot-
ing x=c() the first Chern class of , we have

H*(F(n), Z)=Z[x, x, ..., x]/I+

where I+ is generated by all symmetric polynomials of positive degree
in x, x, ., xn.

Let =: F(n)G,_ be the natural fibre bundle with the fibre F(k)
F(n- k). Then =* H*(G,_, Z)H*(F(n), Z) is a monomorphism

and *(c) (or =*(c)) is the i-th elementary symmetric polynomial in
x, x, ..., x (or in x+, ..., x) respectively (Borel-Hirzebruch [2,

16.2]).

Consider the k-th exterior product A {, of {,. Since { is a U(k)-

bundle, {, is a line bundle and its first Chern class satisfies

The Hilbert polynomial with respect to z=ch( )=exp (x +...+ x)
and d=c(G,_) is
(3.1) H(t)= {exp (t(x +... + x))(G,_)}[G,_].

By the elementary Lie algebraic theory, the set of the positive
roots o U(n) is {e--e li<]n}. Note that the elements e, e, ...,
e e V* are identified with x, x, ., x e H(F(n), Z) (see 2).
The bilinear form is given by
(3.2) (e, e)= (Kronecker delta).

Now we are ready to prove Main Theorem. For the part (a), by
Theorem 1.1, it is sufficient to show

(3.3) r=2m+, H (a(n-- ])--a(]-- l)).
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By (2.1) and (3.1), H(1/2) is equal to
(3.4) nl_i_ ((fl/2) +/, el- e)/.-, (6, e-- e)lk+ljn

where fl=--(e+e+... +e) and=(<(e--e)/2. Since
(, e- e) ]-- i and

1 ff lik and k+ l]gn,(fl, e- e)
0 otherwise,

hold by (3.2), we get

H + n--j
j= n- j=

where (s), denotes the multiplication s(s--1)...(s-q+l) for a real
number s and a positive integer q. Note that if s is also an integer
with sq, then (s)--s /(s-q) and making use of ell known elemen-
tary number theoretical ormula s=,(sX)+a(s), we obtain ,((s))=q

a(s) + a(s-- q). Thus we have

, (n-]),._ =k(n-k)- E (a(n-j)-(k-]))
j=l

and hence (3.3) is obtained.
Preceding the proof o2 the part (b) of Main Theorem, we prepare

a lemma. Let (X)=(X, 0, 1)--(X)[X] be the -genus.
Lemma .1. Let =eh( )gdd=e(,_).
Proof. Since A(X)-(X)[X]={exp (-e(X)/2))(X)}[X], sub-

stiuting X=G,_, we can use Theorems 2.1 and 2.2 again. Noe
ha the firs Chern class e(G,_) is obtained as -e by Borel-
Hirebrueh [2, 16.2] where *(e)=-(+... +)
Hence (G,_) is equal to (8.4) with =(e+e+... +e) and the
lemma follows.

Now (b) follows from Lemma 8.1 and heorem 1.2 wih
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