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Introduction. The purpose of the present paper is to prove non-
immersion and non-embedding theorems for the complex Grassmann
manifolds G, ,_,=Umn)/U(k)x Un—k) by making use of an index
theorem due to Atiyah-Hirzebruch [1]. We denote by XC R? (or X C R9)
the existence of immersion (or embedding) of a differentiable manifold
X into the Euclidean space R? respectively. Let a(q) denote the number
of 1’s in the dyadic expansion of an integer q. Then our results are
stated as follows:

Main Theorem. Let2m=2k(n—k) be the dimension of Gy,,_, and
let r=3"% (e(n—7—a(j—1). Then,

(a) (1) Glc,n—kng“n—”, (ii) Gk,n—kgR4m_zr—1'

(o) If nis odd, then m=k(n—k) is even and

(i) if r=3 (mod4) then G, ,_ZR™ "2

(i) if r=20r3 (mod4) then G, ,_,ZR™ ",

if r=1 (mod4) then G, ,_,ZR™ .

These are generalizations of results for complex projective spaces
investigated by Atiyah-Hirzebruch [1], Sanderson-Schwarzenberger
[5] and Mayer [4] and of the results for some complex Grassmann
manifolds obtained by Sugawara [6].

This paper is arranged as follows. In §1, the index theorem for
immersion and embedding due to Atiyah-Herzebruch [1] and Mayer
[4] are recalled. §2 is devoted to show the computability of some
Todd genus for complex homogeneous spaces G/U. We prove Main
Theorem in § 3 and exhibit Table I of » for some #n and k.

The author wishes to express his hearty gratitude to Professor
M. F. Atiyah for enlightening discussions.

§1. Index theorems. Let X*™ be a closed connected oriented
differentiable manifold of 2m dimension. Let {A,(pl, Dy -+ >0y} be
the multiplicative sequence of polynomials [3, § 1] with (2/2)/sinh (z/2)
as characteristic power series and let Jf(X) be the cohomology class
> A [(py(8), - - -, p,(8) of the tangent bundle §=7(X) of X. For any
ze H¥(X, Q) and d ¢ H(X, Q), we define A(X, d, z)={ze‘Ui(X)}[X]. Let

*  Dedicated to Professor Atuo Komatu for his 70th birthday.
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Table I
nk 12 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1
3 1\1 Table of r
412 2 2 r=3; @(n—)=-a(i~1)
5 1 2\2 1
6 2 2 3 2 2
7 2 3 3\3 3 2
8 3 4 5 4 5 4 3
9 1 3 4 4\4 4 3 1
10 2 2 4 4 5 4 4 2 2
11 2 3 3 4 5\5 4 3 3 2
12 3 4 5 4 6 6 6 4 5 4 3
13 2 4 5 5 5 6\6 5 5 5 4 2
14 3 4 6 6 7 6 7 6 7 6 6 4 3
5|13 5 6 7 8 8 7\7 8 8 7 6 5 3
16 4 6 8 8§ 10 10 10 8 10 10 10 8 8 6 4
17 1 4 6 7 8 9 9 8\8 9 9 8 7 6 4
18 2 2 5 6 8 8 9 8 9 8 9 8 8 6 5
912 3 3 5 7 8 8 8 9\9 8 8 8 7 5
20 3 4 5 4 7 8 9 8 10 10 10 8 9 8 7
21 2 4 5 5 5 7 8 8 9 10\10 9 8 8 7
22 3 4 6 6 7 6 g§ 8 10 10 11 10 10 8 8
23 3 5 6 7 8 8 7 8 10 11 11\11 1 10 8
24 | 4 6 8 8 10 10 10 8 11 12 13 12 13 12 1
25|12 5 7 8 9 10 10 9 9 11 12 12 12 12 11

ch(X) be the subring of H*(X, @), the image of Chern character
ch: K(X)— H*X, Q). For an element z=>",z,¢ch(X) with
2, € H(X, Q), we write 2¥=>",2,t° where t is an indeterminate.
The Hilbert polynomial H(t) with respect to z € ch(X) and d e H(X, Z)
is defined (Atiyah-Hirngruch (1, §2.5]) as fol}ows:

(1.1) Ht)=AX, d/2,z9)={z"e** _J(X)}[X].

We denote by v,(k) the (positive or negative) exponent of a prime p in
a rational number k, that is, k=[], p’»®. For the next theorem, see
Atiyah-Hirzebruch [1, §2.6], Sanderson-Schwarzenberger [5, Theorem
4] and Mayer [4, §4.3].
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and let H(t) be the Hilbert polynomial with respect to z e ch(X) and
de H(X,Z). Letr=2m+v,(H1/2)), then

(i) X¢R4m—2'r’ (ii) XgRMn—Zr—l.

When the dimension of X is divisible by four, Mayer [4, §4.3] im-
proved above theorem. Let ¢chO(X) be the subring of ch(X), the
image of Chern character composed with the complexification ¢ ; KO(X)
—K(X).

Theorem 1.2. Let 2m be the dimension of X with m even and let
H@t)=A(X, 0, 2?) be the Hilbert polynomial with respect to z € chO(X)
and d=0. Let r=2m+v,(H(1/2)), then

(i) if r=3 (mod4) then XgR'm ¥+?

(i) if r=20r3 (mod4) then XgRim ¥+

if r=1 (mod4) then XZR™

If X is moreover endowed with an almost complex structure, then
the Todd class J(X) can be defined as the cohomology class >, T,(c,(&),
-+, ¢4&) of the tangent bundle &=(X) where {T,(c, - - -, ¢;)} is the
Todd multiplicative sequence of polynomial [3, § 1] with x/(1—e?) as
its characteristic power series. In this case choosing d=c¢/(X) the
first Chern class of X, (1.1) is rewritten as
(1.2) H(t)={z"I(X)}[X]
since (&) =exp (c,(&) /2)j(§) holds for any complex vector bundle .

§2. Complex homogeneous space G/U. Let G be a compact
connected Lie group and U its closed subgroup of the centralizer of a
torus of G. Then U contains a maximal torus T of G and by H. C.
Wang G/U is a homogeneous complex manifold (Borel-Hirzebruch
[2, §18.5]). Let V be the universal covering space of 7 and z: VT
be the projection. Let I'=xz"'(e) be the lattice point set whereee T is
the unit element. Then the subgroup of the dual space V*=Hom (V, R),
consisting of all the functions ¢ € V* which takes the value in the inte-
gers ZC R on [, is identified with the cohomology group HY(T, Z) and
the latter is identified with the cohomology group H*G/T, Z) by the
negative transgression. Hence roots or weights of any representation
of G are regarded as elements of H¥(G/T, Z) [2, §10]. The following
two theorems play the essential role in computation of H(¢).

Theorem 2.1 (Borel-Hirzebruch [2, §24.7]). Let ¥ be a set of
roots giving the complex structure of G/U. Let 8 be a weight ortho-
gonal to the roots of U and (B, ®)>0 for all e ¥, where (, ) denotes
the bilinear form induced from the Killing form. Then the Todd
genus T(G/U, p)={e’d(G/UN}G/U] is equal to the dimension of the
irreducible representation with the highest weight .

Theorem 2.2 (Weyl’s dimension formula). LetV be anirreducible
representation space with the highest weight 8. Then
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dim V=] (3+9, ) / NGo =X

Combining these two theorems, the Hilbert polynomial H(t) with
respect to z=¢? and d=¢,(X) is obtained as

@.1) H®)= ] (tp+5,a) / I G,

where the multiplication runs through over the positive complementary
roots we ¥, since (8, ®)=0 if « is a root of U by orthogonality.

§3. Complex Grassmann manifolds. Inthis section, we give the
proof of Main Theorem. Let U(k)XUm—k)—Umn)—G4, _; be the
natural principal bundle and let {,P¢, be the associated vector bundle.
Denoting ¢;=¢,(¢) (or ¢,=c¢,(,)) the i-th Chern class of ¢, (or ,) respec-
tively, we have

H¥(Gronopy ZY=ZICy, Coy »++y Cis €y »+ +5 Co_i]/I*
where J* is an ideal generated by the elements {3>;,,_; ¢;c;; £>0}.

Let F(n) be the complex flag manifold U(n)/T™ where T" is a max-
imal torus of U(n). Let T"—U(n)—F(n) be the natural principal
bundle and let £,@s,®- - - @&, be the associated vector bundle. Denot-
ing x,=c,(¢,;) the first Chern class of &;, we have

H*(F(’ﬂ), Z)=Z[x1’ Loy ** xn]/I+
where I* is generated by all symmetric polynomials of positive degree
in @, &, « vy Xy

Let n: F(n)—Gy,,_; be the natural fibre bundle with the fibre F(k)
X F(n—k). Then n*: H¥ Gy ,_y, Z)—>H*(F(n), Z) is a monomorphism
and #*(¢,) (or =z*(c})) is the i-th elementary symmetric polynomial in
Dy Xyy ++ 5y X (O in x4y, -+ -, ;) respectively (Borel-Hirzebruch [2,
§16.2]).

Consider the k-th exterior product /k\ g, of . Since ¢, is a U(k)-
k
bundle, A ¢, is a line bundle and its first Chern class satisfies

n*(q(/k\ Cl>>=x1+x2+ R I

The Hilbert polynomial with respect to z= ch( /k\ Cl) =exp (x,+ - +2,)
and d=c¢,(Gy, ,_;) i8
(3.1) H(t) ={eXp (t(%l ‘|“ e + xk))g(Gk,n—k)}[Gk,n-k]'

By the elementary Lie algebraic theory, the set of the positive
roots of U(n) is {e;—e;; 1<i<j<mn}. Note that the elementse, e, -- -,

e, € V¥ are identified with —a,, —x,, - - -, — 2, € H(F(n), Z) (see §2).
The bilinear form is given by
3.2) (e:, e)=0;, (Kronecker delta).

Now we are ready to prove Main Theorem. For the part (a), by
Theorem 1.1, it is sufficient to show

3.3) 1”=2m+u2(H(-;—)) - z (e(n—f)—alG—1).
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By (2.1) and (3.1), H(1/2) is equal to
(3.4) 59552, ((B/2) 46, e,—e€)) /[ 151252, (0, e,—e))
where g=—(e;+e,+ - - - +¢€,) and 6=(3:2,<;<, (e,—€,)/2. Since
0, e;—e)=j—1 and

(19, €;,—¢e j) = {
hold by (38.2), we get

1 L1 , k .
H(—)=H (—+n—y) [T (=i
2 j=1\2 n-k/ j=1
where (s), denotes the multiplication s(s—1)---(s—g+1) for a real
number s and a positive integer q. Note that if s is also an integer
with s>q, then (s),=s!/(s—¢)! and making use of well known elemen-
tary number theoretical formula s=y,(s!)+a(s), we obtain v,((s)))=¢
—a(s)+a(s—q). Thus we have
k
w( 11 (5 +n—1),_)=—kn—0
j=1\2 n—k
& k
([l =)as) =ln— 10— 3 (atn— ) —ae—i)
j= j=

and hence (3.3) is obtained.
Preceding the proof of the part (b) of Main Theorem, we prepare
a lemma. Let A(X)=A(X,0,1)=_A(X)[X] be the A-genus.
k
Lemma 3.1. Let z:ch( A cl) and d=c(Gyn_0). If nis odd, then

VZ(A(Gk,’IL—IH @/2’ z(l/Z)):Vz(/i(Gk,n—k))-

Proof. Since A(X)=AX)[X]={exp (—¢,(X)/2)T(X)}[X], sub-
stituting X=G, ,_;, we can use Theorems 2.1 and 2.2 again. Note
that the first Chern class ¢,(G,,,._.) is obtained as —mnec, by Borel-
Hirzebruch [2, §16.2] where =z*(¢c)=—(x,+---+2,) e H(F W), Z).
Hence A(G, ... is equal to (3.4) with g=n(e,+e,+ - --+e,) and the
lemma follows.

Now (b) follows from Lemma 3.1 and Theorem 1.2 with

z=1¢€ chO(G,,,_;).

1 if 1<i<kand k+1<j<m,
0 otherwise,
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