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Duality Theorems for Symmetric Differential Forms

By Shigeru IITAKA
Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. $. A., Feb. 13, 1979)

In this. paper, duality theorems or symmetric (differential) forms
are ormulated and proved, which are generalizations, of the duality
of plane curves, i.e. the theorem to the effect that the dual curve of
the dual curve of C coincides with C itself.

Our duality theorems include the duality or space curves given
by H. Weyl and J. Weyl in [4, chap. 1].

Discussions with Mr. T. Urabe were very helpful to complete this
paper, to whom the author gives heartfelt thanks..

1. Let k be a field containing Q and /k be a field extension
such that k is algebraically closed in R. For simplicity, we assume
R has a transcendence basis , ..., $ over k. Then, the ring of sym-
metric (differential) forms of R over k SF (R/k) is written in the form

R[d, ..., d,,, d21, ..., dij, ],
which is isomorphic to the polynomial ring of independent variables
d$, ., d, ., d$, over R, where d is. the symmetric derivation
(see [1], [2]).

Thus, SF (R/k) has no zero-divisors and its field of fractions is
denoted by QSF (R/k). We introduce : QSF (R/k)-QSF (R/k) by
(o)/o)2)--(o)dCOl--Codco)/w where (0,we SF (R/k). Then is. well
defined and k-linear. Further, satisfies the Leibniz rule, i.e.
(.)=(q).w+.(w) or any ,w e QSF (R/k).

For simplicity, d is again used to denote QSF (R/k)-oQSF (R/k).
Definition. For any 1, ", w e QSF (R/k), we define W(w, .,)

to be the determinant of the matrix [di-w2]l<i,<_t, which is called the
Wronskian form associated with (Ol, ., o.

Proposition 1. ( ) For any q e QSF (R/k),
W(+O.)l, ", +0)) +l W(o01, "’,

(ii) W(1, o2, ., ot)= W(doo2, ., doo,).
(iii) If o, ..., o are k-linearly dependent, then W(o, ..., o)=0.

Proofs of the above results are easy and omitted.
By using (i) and (ii), we can compute W(wl, ..., ot) as. follows:

\ \ (.01 / \ (.01 /



54 S. IITAKA [Vol. 55 (A),

l-1 \ (.01 \ O) /

=o d W d ., d
d( d( .
\ O) / \ O /

Theorem 1. If w, ...,w are k-linearly independent, then
W(, ., ) =/= O.

Proof. We first consider the case 1--2. Then we may assume
0, 2 e SF (/k), which are k-linearly independent. In this case, we
shall prove that W(w, w) :/: 0.

By N denoting Exponents (a, ..., a, ...) e Zo, Zo-(
_0} we introduce the following notation (see [2])"

( ) (d$)=(d)’(d2$)...(d)....
( ii ) Letting L=(N, N2, ., N,), we put

(d) (d),... (d$).
( iii ) (N1, .-., N)(N, ..., N) is defined by the existence of i

N’ N N, in which N (a,a2,such that NN, N+= +, ..,
a,...)N=(b, b2,..., b,...)is defined by the existence of ] such
that %b, a+=b+, ..., a=b, (for any r]).

( iv ) For w= (d) e SF (/k) {0}, define H(w) to be max
0}. o*=()(d) is said to be the highest part of .

( v ) If L=(N,N2,..., N), we put s(L)=max{][NO}, 0 de-
noting (0, 0, -..). When L= (0, 0,...., 0), s(L) is defined to be 0.

(vi) If N=(a,a2, ...), we put r(N)=max{]]a0}. When
N=(O, O, ...), we define r(N) to be 0.

(vii) If r(N) O, then dN is defined to be (a, ., a_, a- 1, 1, 0,
0, ..) where r=r(N) and N= (a, a2, ..., a, 0, ...). Thus H((d$)O
N and H(d(d$)O dN, if N 0.

(viii) If L=(N, N2, ., N)0, then define dL to be (N, N2, .,
N_, dN, 0, ..., 0) where s=s(L). Thus H(d(d))=dL, if L0.

Lemma 1. (I) If , w20 such that H(w)>H(w2), then W(o, 02)
0 and H(W(o, w2)) dH(w)+H(w2).

(II) If H(w)=H(o2)=H, and w=(d),w=(d) with
then W(w, w2)0 and H(W(o, w2))=2H+H(()).
Proof is easy.

If W(, w2)=0, then by the above lemma, H(w)=H(w2)=H and
o/w e k. Thus, there exists a e k such that H(-ao2)H. Hence
W(-a,)0 if -ao0. But

W(-a,)=W(, 2)-aW(, 2)= 0.
This is a contradiction. Therefore, W(o,w2)=0 with w0 implies
that =w2 for some a e k.

Now, we prove Theorem 1 by induction on 1. If , 2, ", are
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k-linearly independent, then so are o/o, ..., wt/w. This implies that
d(o./o), ..., d(o/o) are k-linearly independent. As a matter of act,
i2 there exist a, ..., a_ek such that ,ad(w.//)=0, then
d( aW/l/W)=0. From what we have proved above, it 2ollows that

aw+=a0w or some a0, i.e. w,...,wt are k-linearly dependent, a
contradiction. Therefore, by induction hypothesis, W(d(o/o),...,
d(ot/o))=/=O. Recalling that W(w, o, ..., o)--oW(d(o/o), ..., d(o
/w)), we complete the proof of Theorem 1.

2. We fix 1, x, ..., x e which are k-linearly independent.
Putting W(x)= W(x, x, ..., x) and W((dx))= W(dx, ..., dx_, dx+,

.., dx), we define u to be (-1)W((dx))/W(x) 2or l<i<n. Then
since

d’xl dPx2 d’x
dx dx. dx [W(x) i p=0,

[ 0 ifl<_p<_n--1,
dn-x dn-xz dn-x

we obtain xu+1=0 and dvx.u= 0 2or l_<p_<n- 1. Setting

dxldu= d;x.du, we obtain the next lemma.
i=l

Lemma 2. (I)p, dx[deu=O if l_p+q_n--1.
(II); dxld-u=(-1)Po, where o=W(dx)/W(x), and W(dx)

W(dxl, ..., dx).
Proof. We first prove I, by induction on q. If q-0, this was

already proved. Assume I, or r_q--1. Then or p+q_n-1,
dxldq-lu----1 or 0, hence O=d(d’xldq-u)=d’/lxld-lu/dxldu.
Thanks to d’+x Id-u=O by I+,_, we obtain

Next, we prove II by induction o’n n-p. By the expansion o2
W(dx), we have

W(dx) =(__l)ndnxlu,
W(x)

hence IIn holds. If II is, true, then rom I_,n_, it 2ollows that
0 d(d-xldn-u) dxldn-u + d-Ixldn-+124. Hence, dP-xldn-+u

dx]d-u=(- 1)-W(dx)/W(x). Q.E.D.
Define the next matrices."

1, X, ..., X/X(1, x)= 0, dx, dx
O, dn-x, dnxn]

X(x) X(dx)
dn-lx, ,dn-x \dnx, ,dnxn]

Then by Lemma 2,
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0
X(1, x). tX(1, u)-= dx. ]dn-u

d xl i
and

X(x)’X(du)= I 0

d-xld

dx dn lu --fox

(-- 1)-o
/ and W(x)W(du) o. Similarly, W(u)W(dx)Hence, W(dx)W(du)=(Ox

(-- 1)0.
Proposition 2. 1, u, ..., Un are k-linearly independent.

n+lProof. Since W(dx):/:O, W(x):/:O, it ollows that W(du)=o
/W(dx): W(dx)n/W(x)n+ l=/:=O. Q.E.D.

Theorem 2 (First duality theorem).
x=(-- 1)W((du))/W(u) for all 1 <_] _n.

Proof. By I0, of Lemma 2 and x lu+l--O, we have

xlu= u.x=-l,
dxlu= du. x=O,

dn-xlu n-u X---O.
Thus, x=(-1)W((du))/W(u) for all ].

W(du)Proposition ). c0==(- 1)nW.
W(u)

Proof. By X(dx).tX(u), we have
W(dx)W(u) (- 1).

Thus.

w= W(du) W(dx)W(du) __(_ 1)nwx. Q.E.D.
W(u) W(dx)W(u)

3. Let V be a k-vector space with basis {e0, .", e} and g, f" V
-V be linear maps such that

(f g)(e) ( 1)n-io)en_i-- On_i + l,ien_i + --where tg denotes the dual map of g, a, e k, e k, and Oin.
Now, we use the following notation to denote vectors in the ex-

terior algebra /’V of V over k" for any subset I o N={O, 1,..., n},
we assume that the elements are arranged by the order of the natural
numbers, i.e. if I is (i,..., i}, then i... i.

cI is defined to be the complement of I in N. For I--(ix,..., is},
we put e e/. /e, and define sgn (I) by e/e sgn (I)e.

Corresponding to f" VV, we have f" /V/V defined by
f(e,/. /e)-f(e)/. /f(e), or any I--- {i, ., is} N.

(s)Writing f(e)= -,a,e and f(e)= "(), we see that
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=det [a,]_<;,<_ where I={i, ...,i} and J={], ..., ]}. Letting
(ja(n+l-s).,(8) sgn (I) sgn cJ,c we define f* /V--/V by f*(e)

-, a*()e Then f*of=(det f).id, det f denoting the determinantJ,I J"

of the matrix corresponding to f.
From the hypothesis, we have

n8(fotg)s(elo,l,...,s_l)-- (- 1) w e0,,...,_.
Hence, det f tgs(eo,1 ,s 1})--(--lnor*e and so det f. b)iex] .Is c{0,1,...,n-1}

--( 1)w-*(s) where P={0, 1 s-l}, Q={0,1 n-s}, andbi,cQi

I-- (il, "’’, is}.
Thus det f .(s). ( 1)use0 sgn
Applying the above formula to X(1, x). tX(1, u), we obtain the next

theorem.
Theorem 3 (Second duality theorem). For any I=(il, ..., i} and

cI= ]1, "", ]-+1}, put M(x)-- W(x, ..., x,) and M(u)- W(u, ...,
u,_,+,), in which Xo and Uo denote 1. Then

W(dx)M(u)--(-- 1)n01 sgn (I)M(x).
4. Let Z be a non-singular variety such that the field of rational

unctions is. . Suppose that x0=l, xl,..., x are regular at p, i.e.

X0, X, "’’,XneC)z,p. WehavetheE(=, kx)-gapsequenceatp. In
j=O

other words, there exists a sequence of (generic) quadric transforma-
tions f’ZZ_ whose center are points p e Z which are general
points, of fT(p_) such that po=p, Zo=Z and l<_]<_n. Letting q=Pn
and /=fo. of" ZZ0, we have /*" Oz,,(C)z,q which satisfies
that p*E has. a basis {y0=l, yl, ., Yn} such that ,q(yo)=O=alvq(yl)
=a... Vq(yn)=a+, where Vq(y) is the order of y at q (see [1], [2]).
By definition of Theorem 2 in [2], {1, a,..., a} becomes the E-gap
sequence at p. We define the dual space oi E by w()(E)=the space
spanned by W(Zl, ..., Zn) where z e E. Then /*(o(n)(E))=o()(/*E)
has the basis {w= W(y0, ..., y_, y+, ..., y)}, in which

1)q((’Oi)’-- E a--n(n--1)/2 for all
jei +

Then letting="q((On_) for 0< i<n, we have the sequence (fl0, fl," ", fin),
which is. considered as the o()(E)-gap sequence at p. The sequence
B--(O, be, ", bn+l) defined by b=fl_l-flo for 2in+1 is the reduced
sequence of (fl0,’",fl) and it is said to be the dual sequence of
A=(0, a,-. ",an). B is denoted by A*. Then b=an+l-a+l_, or
all l_]_n+l, and A**=A.
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