21. On the Homogeneous Lüroth Theorem

By Shigeru IITAKA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1979)

§1. Lüroth theorem. Let $f, g \in C[X_i, \dots, X_n]$ such that f is irreducible and suppose that polynomials g and f are algebraically dependent. Then g is a polynomial of f. In particular, if g is also irreducible, then $g = \alpha f + \beta, \alpha$ and $\beta \in C$.

The above statement is equivalent to the Lüroth theorem in the case of polynomials. For the sake of convenience, we begin by giving a proof to the above statement by using logarithmic genera [1].

Proof. Let $A^n = \operatorname{Spec} C[X_1, \dots, X_n]$, $\Gamma = \operatorname{Spec} C[f, g]$, and $C = \operatorname{Spec} C[f] \cong A^1$. Denoting by Γ' the normalization of Γ in A^n , we have the following diagram:

Hence $\bar{g}(\Gamma') \leq \bar{q}(A^n) = 0$. Since Γ' is normal, we have $\Gamma' \cong A^1$ by [3, Example 1]. This implies that $\Gamma' = \operatorname{Spec} C[\theta], \theta \in C[X_1, \dots, X_n]$. From the inclusions $C[f] \subseteq C[f, g] \subseteq C[\theta]$, we infer readily that f is a poly nomial of θ . However, since f is irreducible, f is a linear form of 1 and θ , hence C[f, g] = C[f]. Q.E.D.

§ 2. Quasi-Albanese maps of complements of P^n . Let F_0, F_1 , ..., F_r be mutually distinct (up to constant multiple) irreducible polynomials with $d_j = \deg F_j$. Consider a sublattice L of Z^{1+r} defined by

 $L = \{ \boldsymbol{a} \in \boldsymbol{Z}^{1+r} ; \langle \boldsymbol{a}, \boldsymbol{d} \rangle = 0, \ \boldsymbol{d} = (d_0, \cdots, d_r) \}.$

Let (a_1, \dots, a_r) be a Z-basis of L. Put

 $\Phi_j = \prod F_i^{m(l)}$, where $a_j = (m(1), \dots, m(r))$.

Then we have a morphism

 $\alpha = (\Phi_1, \cdots, \Phi_r) : V = P^n - \bigcup V_+(F_j) \longrightarrow C^{*r}.$

 α coinsides with the quasi-Albanese map of V (cf. [2]). Denote by Δ the closed image of V by α . Δ is an affine variety whose coordinate ring $\Gamma(\Delta, \mathcal{O}_A)$ is isomorphic to

$$C[\Phi_1, \cdots, \Phi_r, \Phi_1^{-1}, \cdots, \Phi_r^{-1}].$$

Proposition 1. Suppose that dim $\Delta = 1$. Then

i) Δ is non-singular,

ii) any general fiber of $\alpha: V \rightarrow \Delta$ is irreducible.

Proof. This follows easily from the universality of quasi-Albanese

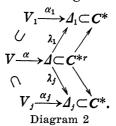
maps (see [2]).

Note that ii) is equivalent to the following

ii)' The field extension $C(P^n)/C(\Delta)$ is an algebraically closed extension. Here C(V) indicates the function field of V. More precisely, ii)' is replaced by the following

ii)" $C[\Phi_1, \dots, \Phi_r, \Phi_1^{-1}, \dots, \Phi_r^{-1}]$ is integrally closed in $\Gamma(V, \mathcal{O}_V) = \{\Psi/F_0^{s_0} \cdots F_r^{s_r}; \Psi \text{ homogeneous polynomials such that } \deg \Psi = \sum s_j d_j, s_j \ge 0\}.$

§3. The homogeneous Lüroth theorem. We assume that $d_0 \leq d_1 \leq \cdots \leq d_r$. Put $V_1 = \mathbf{P}^n - V_+(F_0) \cup V_+(F_1)$ and $V_j = \mathbf{P}^n - V_+(F_0) \cup V_+(F_j)$ ($j \geq 2$). Denote by Δ_1 and Δ_j the closed images of the quasi-Albanese maps of V_1 and V_j , respectively. By the property of quasi-Albanese maps, we have the following commutative diagram:



Then since a general fiber of $\alpha_1: V_1 \rightarrow \mathcal{A}_1$ is irreducible by Proposition 1, we know that $\lambda_1: \mathcal{A} \rightarrow \mathcal{A}_1$ is birational. Similarly, $\lambda_j: \mathcal{A} \rightarrow \mathcal{A}_j$ is also birational. Hence $C(\mathcal{A}_1) = C(\mathcal{A}_j)$. Let $\overline{d} = GCD(d_0, d_1)$, and put $\delta_0 = d_1/\overline{d}$ and $\delta_1 = d_0/\overline{d}$. Then $d_0\delta_0 = d_1\delta_1 = LCM(d_0, d_1)$. In place of d_0 and d_1 , we consider d_0 and d_j and then we get δ'_0 and δ'_j . Hence $d_0\delta'_0 = d_j\delta'_j$ $= LCM(d_0, d_j)$. Thus

$$C(\Delta_i) = C(F_{ij}^{\delta'_j}/F_0^{\delta'_0})$$

 $C(\Delta_1) = C(F_1^{\delta_1}/F_0^{\delta_0})$

From $C(\mathcal{A}_1) = C(\mathcal{A}_j)$, we derive

$$rac{F_1^{\delta_1}}{F_0^{\delta_0}} = rac{lpha F_j^{\delta_j'} + eta F_0^{\delta_0'}}{\gamma F_j^{\delta_j'} + arepsilon F_0^{\delta_0'}}$$

where

$$egin{pmatrix} lpha & eta \ \gamma & arepsilon \end{pmatrix} \in GL(2, oldsymbol{C}).$$

We use the following easy lemma.

Lemma 1. Let $f, g, h \in C[X_0, X_1, \dots, X_n]$ be homogeneous distinct (up to constant multiple) irreducible polynomials such that

 $f^a _ \alpha h^c + \beta g^e$

$$g^b - \gamma h^c + \varepsilon g^e$$
,
where $a, b, c, e \ge 1$ and $\alpha \varepsilon - \beta \gamma \ne 0$. Then $\gamma = 0$ and $b = e$.
Proof. From $f^a(\gamma h^c + \varepsilon g^e) = g^b(\alpha h^c + \beta g^e)$, it follows that
 $\gamma h^c + \varepsilon g^e = g^b A$, $A \in C[X_0, \dots, X_n]$.

No. 3]

[Vol. 55(A),

Q.E.D.

Hence $\gamma = 0$ and b = e.

Thus we have $f^a = \alpha h^c + \beta g^b / \epsilon$.

Lemma 2. Let f_1, f_2, f_3 be mutually distinct (up to constant multiple) irreducible polynomials such that $f_1^a + f_2^b + f_3^c = 0$ for some $a \ge b \ge c$ ≥ 1 . Then c = 1.

This is derived from the classical

Theorem (G. Halphen [1]). Let Λ be a linear pencil of hypersurfaces on \mathbf{P}^n . Assume that a general member of Λ is irreducible. Then there are at most two divisors of the form $e_i\Gamma_i$, where $e_i \geq 2$ and the Γ_i are prime divisors, belonging to Λ .

The author learned the above theorem from Prof. Jouanolou while he stayed in Japan in 1977.

Accordingly, $\delta_0 = \delta'_0$ and $\delta'_2 = \cdots = \delta'_r = 1$. Therefore, $F_j = \alpha_j F_0^{\delta_0} + \beta_j F_j^{\delta_j}$

for some constants α_j and β_j .

Choosing a suitable Z-base of L, we get

$$\Phi_1 = F_1^{\delta_1} / F_0^{\delta_0}, \qquad \Phi_j = \alpha_j + \beta_j \Phi_1.$$

Hence, putting $\gamma_j = \alpha_j / \beta_j$, we have

 $\Gamma(\Delta, \mathcal{O}_{\Delta}) = \boldsymbol{C}[\boldsymbol{\Phi}_1, \boldsymbol{\Phi}_1^{-1}, (\boldsymbol{\Phi}_1 + \boldsymbol{\gamma}_2)^{-1}, \cdots, (\boldsymbol{\Phi}_1 + \boldsymbol{\gamma}_r)^{-1}].$

Theorem (the homogeneous Lüroth theorem). Notations being as in the above, we let G be a homogeneous polynomial whose degree is a multiple (≥ 1) of GCD(d_0, d_1). Choosing $\lambda, \nu \geq 0$ such that GF_1^{λ}/F_0^{ν} has degree 0, we assume that GF_1^{λ}/F_0^{ν} is algebraic over $\Gamma(\Delta, \mathcal{O}_{\Delta})$. Then

 $G = c \prod (F_1^{\delta_1} + \Phi_j F_0^{\delta_0})^{e_j}.$

Proof. Putting $R = \Gamma(V, \mathcal{O}_V)$, $B_1 = \Gamma(\Delta, \mathcal{O}_A)[GF_1^{\lambda}/F_0]$, and $B = \Gamma(\Delta, \mathcal{O}_A)$, we note the following

Lemma 3. Let R and B are normal rings finitely generated over a field k and let B_1 be a k-subring of R containing B as a subring. Suppose that dim $B = \dim B_1 = 1$ and B is integrally closed in R and suppose that $\bar{q}(\operatorname{Spec} R) = \bar{g}(B)$. Then $B = B_1$.

The proof is easy and omitted.

Q.E.D.

§ 4. A problem on the classification of surfaces. In this section, we assume n=2. Hence $V=P^2-V_+(F_0)\cup\cdots\cup V_+(F_r)$. We shall consider some analogy with Enriques' criterion on irrational ruled surfaces. We assume $\bar{\kappa}(V) = -\infty$ and $\bar{q}(S) = r \ge 1$. Then the image Δ of the quasi-Albanese map of V turns out to be a curve, since $\bar{\kappa}(\Delta) \ge 0$. Thus, we arrive at the situation in §§ 2 and 3. Applying Kawamata's theorem [4], we conclude that $C_{\lambda} = V_+(F_1^{\delta_1} + \lambda F_0^{\delta_0})$ is a rational curve with only one cusp p for almost all λ such that $C^2 - \{p\} = A^1$.

Problem. Determine homogeneous irreducible polynomials F_0 and $F_1 \in C[X_0, X_1, X_2]$ such that $F_1^{\delta_1} + \lambda F_0^{\delta_0}$ is also irreducible for almost

90

No. 3]

all λ and such that $C_{\lambda} = V_{+}(F_{1}^{\delta_{1}} + \lambda F_{0}^{\delta_{0}})$ is a rational curve with only one cusp p satisfying $C_{\lambda} - \{p\} = A^{1}$.

References

- [1] G. H. Halphen: Oeuvres de G. H. Halphen. Paris, Gauthier-Villars (1916).
- [2] S. Iitaka: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo, Sec. IA, 23, 525-544 (1976).
- [3] ——: On logarithmic Kodaira dimension of algebraic varieties. Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 175–189 (1977).
- [4] Y. Kawamata: Addition formula of logarithmic Kodaira dimension for morphisms of relative dimension one. Proc. Intern. Symp. on Algebraic Geometry, Kyoto, 207-217 (1977).