21. On the Homogeneous Liuroth Theorem

By Shigeru Ittaka
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1979)

§ 1. Lüroth theorem. Let $f, g \in C\left[X_{i}, \cdots, X_{n}\right]$ such that f is irreducible and suppose that polynomials g and f are algebraically dependent. Then g is a polynomial of f. In particular, if g is also irreducible, then $g=\alpha f+\beta, \alpha$ and $\beta \in \boldsymbol{C}$.

The above statement is equivalent to the Lüroth theorem in the case of polynomials. For the sake of convenience, we begin by giving a proof to the above statement by using logarithmic genera [1].

Proof. Let $A^{n}=\operatorname{Spec} C\left[X_{1}, \cdots, X_{n}\right], \quad \Gamma=\operatorname{Spec} C[f, g]$, and C $=\operatorname{Spec} C[f] \leftrightarrows \boldsymbol{A}^{1}$. Denoting by Γ^{\prime} the normalization of Γ in \boldsymbol{A}^{n}, we have the following diagram :

Diagram 1
Hence $\bar{g}\left(\Gamma^{\prime}\right) \leq \bar{q}\left(A^{n}\right)=0$. Since Γ^{\prime} is normal, we have $\Gamma^{\prime} \leftrightarrows \boldsymbol{A}^{1}$ by [3, Example 1]. This implies that $\Gamma^{\prime}=\operatorname{Spec} C[\theta], \theta \in C\left[X_{1}, \cdots, X_{n}\right]$. From the inclusions $C[f] \subset C[f, g] \subset C[\theta]$, we infer readily that f is a poly nomial of θ. However, since f is irreducible, f is a linear form of 1 and θ, hence $C[f, g]=C[f]$.
Q.E.D.
§ 2. Quasi-Albanese maps of complements of \boldsymbol{P}^{n}. Let F_{0}, F_{1}, $\ldots, \boldsymbol{F}_{r}$ be mutually distinct (up to constant multiple) irreducible polynomials with $d_{j}=\operatorname{deg} F_{j}$. Consider a sublattice L of \boldsymbol{Z}^{1+r} defined by

$$
L=\left\{\boldsymbol{a} \in \boldsymbol{Z}^{1+r} ;\langle\boldsymbol{a}, \boldsymbol{d}\rangle=0, \boldsymbol{d}=\left(d_{0}, \cdots, d_{r}\right)\right\} .
$$

Let $\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{r}\right)$ be a \boldsymbol{Z}-basis of L. Put

$$
\Phi_{j}=\prod F_{l}^{m(l)}, \quad \text { where } \boldsymbol{a}_{j}=(m(1), \cdots, m(r)) .
$$

Then we have a morphism

$$
\alpha=\left(\Phi_{1}, \cdots, \Phi_{r}\right): V=\boldsymbol{P}^{n}-\cup V_{+}\left(F_{j}\right) \longrightarrow C^{* r} .
$$

α coinsides with the quasi-Albanese map of V (cf. [2]). Denote by Δ the closed image of V by α. Δ is an affine variety whose coordinate ring $\Gamma\left(\Delta, \mathcal{O}_{\Delta}\right)$ is isomorphic to

$$
\boldsymbol{C}\left[\Phi_{1}, \cdots, \Phi_{r}, \Phi_{1}^{-1}, \cdots, \Phi_{r}^{-1}\right]
$$

Proposition 1. Suppose that $\operatorname{dim} \Delta=1$. Then
i) Δ is non-singular,
ii) any general fiber of $\alpha: V \rightarrow \Delta$ is irreducible.

Proof. This follows easily from the universality of quasi-Albanese
maps (see [2]).
Note that ii) is equivalent to the following
ii)' The field extension $\boldsymbol{C}\left(\boldsymbol{P}^{n}\right) / C(\Delta)$ is an algebraically closed extension. Here $\boldsymbol{C}(V)$ indicates the function field of V. More precisely, ii)' is replaced by the following
ii) ${ }^{\prime \prime} \quad C\left[\Phi_{1}, \cdots, \Phi_{r}, \Phi_{1}^{-1}, \cdots, \Phi_{r}^{-1}\right]$ is integrally closed in $\Gamma\left(V, \mathcal{O}_{V}\right)$ $=\left\{\Psi / F_{0}^{s_{0}} \cdots F_{r}^{s_{r}} ; \Psi\right.$ homogeneous polynomials such that $\operatorname{deg} \Psi=\sum s_{j} d_{j}$, $\left.s_{j} \geqq 0\right\}$.
§3. The homogeneous Lüroth theorem. We assume that d_{0} $\leqq d_{1} \leqq \cdots \leqq d_{r}$. Put $V_{1}=\boldsymbol{P}^{n}-V_{+}\left(F_{0}\right) \cup V_{+}\left(F_{1}\right)$ and $V_{j}=\boldsymbol{P}^{n}-V_{+}\left(F_{0}\right)$ $\cup V_{+}\left(F_{j}\right)(j \geqq 2)$. Denote by Δ_{1} and Δ_{j} the closed images of the quasiAlbanese maps of V_{1} and V_{j}, respectively. By the property of quasiAlbanese maps, we have the following commutative diagram:

Then since a general fiber of $\alpha_{1}: V_{1} \rightarrow \Delta_{1}$ is irreducible by Proposition 1, we know that $\lambda_{1}: \Delta \rightarrow \Delta_{1}$ is birational. Similarly, $\lambda_{j}: \Delta \rightarrow \Delta_{j}$ is also birational. Hence $C\left(\Delta_{1}\right)=\boldsymbol{C}\left(\Delta_{j}\right)$. Let $\bar{d}=G C D\left(d_{0}, d_{1}\right)$, and put $\delta_{0}=d_{1} / \bar{d}$ and $\delta_{1}=d_{0} / \bar{d}$. Then $d_{0} \delta_{0}=d_{1} \delta_{1}=L C M\left(d_{0}, d_{1}\right)$. In place of d_{0} and d_{1}, we consider d_{0} and d_{j} and then we get δ_{0}^{\prime} and δ_{j}^{\prime}. Hence $d_{0} \delta_{0}^{\prime}=d_{j} \delta_{j}^{\prime}$ $=L C M\left(d_{0}, d_{j}\right)$. Thus

$$
C\left(\Delta_{1}\right)=C\left(F_{1}^{\delta_{1}} / F_{0}^{\delta_{0}}\right)
$$

and

$$
C\left(\Delta_{j}\right)=C\left(F_{j_{j}^{\prime}}^{\delta^{\prime}} / F_{0}^{\delta_{0}^{\prime}}\right) .
$$

From $\boldsymbol{C}\left(\Delta_{1}\right)=\boldsymbol{C}\left(\Delta_{j}\right)$, we derive
where

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \varepsilon
\end{array}\right) \in G L(2, C)
$$

We use the following easy lemma.
Lemma 1. Let $f, g, h \in C\left[X_{0}, X_{1}, \cdots, X_{n}\right]$ be homogeneous distinct (up to constant multiple) irreducible polynomials such that

$$
\frac{f^{a}}{g^{b}}=\frac{\alpha h^{c}+\beta g^{e}}{\gamma h^{c}+\varepsilon g^{e}},
$$

where $a, b, c, e \geqq 1$ and $\alpha \varepsilon-\beta \gamma \neq 0$. Then $\gamma=0$ and $b=e$.
Proof. From $f^{a}\left(\gamma h^{c}+\varepsilon g^{e}\right)=g^{b}\left(\alpha h^{c}+\beta g^{e}\right)$, it follows that

$$
\gamma h^{c}+\varepsilon g^{e}=g^{b} A, \quad A \in C\left[X_{0}, \cdots, X_{n}\right]
$$

Hence $\gamma=0$ and $b=e$.
Q.E.D.

Thus we have $f^{a}=\alpha h^{c}+\beta g^{b} / \varepsilon$.
Lemma 2. Let f_{1}, f_{2}, f_{3} be mutually distinct (up to constant multiple) irreducible polynomials such that $f_{1}^{a}+f_{2}^{b}+f_{3}^{c}=0$ for some $a \geqq b \geqq c$ $\geqq 1$. Then $c=1$.

This is derived from the classical
Theorem (G. Halphen [1]). Let 1 be a linear pencil of hypersurfaces on \boldsymbol{P}^{n}. Assume that a general member of Λ is irreducible. Then there are at most two divisors of the form $e_{i} \Gamma_{i}$, where $e_{i} \geqq 2$ and the Γ_{i} are prime divisors, belonging to Λ.

The author learned the above theorem from Prof. Jouanolou while he stayed in Japan in 1977.

Accordingly, $\delta_{0}=\delta_{0}^{\prime}$ and $\delta_{2}^{\prime}=\cdots=\delta_{r}^{\prime}=1$. Therefore,

$$
F_{j}=\alpha_{j} F_{0}^{z_{0}}+\beta_{j} F_{j}^{\delta_{j}}
$$

for some constants α_{j} and β_{j}.
Choosing a suitable Z-base of L, we get

$$
\Phi_{1}=F_{1}^{\delta_{1}} / F_{0}^{\delta_{0}}, \quad \Phi_{j}=\alpha_{j}+\beta_{j} \Phi_{1} .
$$

Hence, putting $\gamma_{j}=\alpha_{j} / \beta_{j}$, we have

$$
\Gamma\left(\Delta, \mathcal{O}_{\Delta}\right)=C\left[\Phi_{1}, \Phi_{1}^{-1},\left(\Phi_{1}+\gamma_{2}\right)^{-1}, \cdots,\left(\Phi_{1}+\gamma_{r}\right)^{-1}\right]
$$

Theorem (the homogeneous Lüroth theorem). Notations being as in the above, we let G be a homogeneous polynomial whose degree is a multiple $(\geqq 1)$ of $\operatorname{GCD}\left(d_{0}, d_{1}\right)$. Choosing $\lambda, \nu \geqq 0$ such that $G F_{1}^{\lambda} / F_{0}^{\nu}$ has degree 0 , we assume that $G F_{1}^{\wedge} / F_{0}^{\nu}$ is algebraic over $\Gamma\left(\Lambda, \mathcal{O}_{4}\right)$. Then

$$
G=c \prod\left(F_{1}^{\delta_{1}}+\Phi_{j} F_{0}^{\delta_{0}}\right)^{e_{j}} .
$$

Proof. Putting $R=\Gamma\left(V, \mathcal{O}_{V}\right), B_{1}=\Gamma\left(\Delta, \mathcal{O}_{\Delta}\right)\left[G F_{1}^{\lambda} / F_{0}^{\nu}\right]$, and $B=$ $\Gamma\left(\Delta, \mathcal{O}_{4}\right)$, we note the following

Lemma 3. Let R and B are normal rings finitely generated over a field k and let B_{1} be a k-subring of R containing B as a subring. Suppose that $\operatorname{dim} B=\operatorname{dim} B_{1}=1$ and B is integrally closed in R and suppose that $\bar{q}(\operatorname{Spec} R)=\bar{g}(B)$. Then $B=B_{1}$.

The proof is easy and omitted.
Q.E.D.
§4. A problem on the classification of surfaces. In this section, we assume $n=2$. Hence $V=\boldsymbol{P}^{2}-V_{+}\left(F_{0}\right) \cup \cdots \cup V_{+}\left(F_{r}\right)$. We shall consider some analogy with Enriques' criterion on irrational ruled surfaces. We assume $\bar{\kappa}(V)=-\infty$ and $\bar{q}(S)=r \geqq 1$. Then the image Δ of the quasi-Albanese map of V turns out to be a curve, since $\bar{\kappa}(U) \geqq 0$. Thus, we arrive at the situation in $\S \S 2$ and 3. Applying Kawamata's theorem [4], we conclude that $C_{\lambda}=V_{+}\left(F_{1}^{\delta_{1}}+\lambda F_{0}^{\delta_{0}}\right)$ is a rational curve with only one cusp p for almost all λ such that $C^{2}-\{p\}=A^{1}$.

Problem. Determine homogeneous irreducible polynomials F_{0} and $F_{1} \in C\left[X_{0}, X_{1}, X_{2}\right]$ such that $F_{1}^{\delta_{1}}+\lambda F_{0}^{\delta_{0}}$ is also irreducible for almost
all λ and such that $C_{\lambda}=V_{+}\left(F_{1}^{\delta_{1}}+\lambda F_{0}^{\delta_{0}}\right)$ is a rational curve with only one cusp p satisfying $C_{\lambda}-\{p\}=A^{1}$.

References

[1] G. H. Halphen: Oeuvres de G. H. Halphen. Paris, Gauthier-Villars (1916).
[2] S. Iitaka: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo, Sec. IA, 23, 525-544 (1976).
[3] -: On logarithmic Kodaira dimension of algebraic varieties. Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 175-189 (1977).
[4] Y. Kawamata: Addition formula of logarithmic Kodaira dimension for morphisms of relative dimension one. Proc. Intern. Symp. on Algebraic Geometry, Kyoto, 207-217 (1977).

