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1. Introduction. The purpose of this note is to give a proba-
bilistic solution of higher order partial differential equations of some
specific type. We first recall that the solution of the heat equation

(1) 3u-1(3)t 2 -- u, (t, x) e (0, oo) R

(2) u(O, x)=Uo(X)
is expressed in terms o a Brownian motion {B}_0 in the form

(3) u(t, x)---- E[u0(x -- Bt)],where E means, the expectation. The key tormula to prove that (3)
satisfies (1) is (dB)=dt. Being inspired by this formula, we take
another Brownian motion to expect that a ormal formula (dB)
=dr would hold, so that the process B is related to the operator- More precisely, our problem is to express the solution of equa-

tion

3t
in a similar orm to (3) by using the process B. However, B can
not be viewed as a motion of some particle since the Brownian motion

B as a diffusion process with generator 1(-_-- is defined only for
2 x/

t0, while can take negative values. To overcome this difficulty,
we need some trick as is illustrated in what ollows.

The author would like to thank Prof. H. Tanaka or his help in
preparing the manuscript.

2. Simple case. First we discuss a simple equation

Let {}e be a complex-vMued stochastic process given by

(B, t0,
B=kiB_, tO.

Denote by the class of real-valued functions f(z) defined on R which
are extensible to entire functions f() on C satisfying the following
conditions (6) and (7).
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(6)

(7)

f (z)

f(x)=f(x) ior x e R.
f (z)If(z) exp {-- h lz 12}, exp(-hlzl } and

exp {-h zl} are bounded on C or each h0, where z-x /iy.

The heat equation is, in general, not well-posed or the past, as is
well-known. However, we have the 2ollowing theorem by using a
probabilistic method.

Theorem 1. For any Uoe , the function v(t, x)=F[o(X/t)]
satisfies the heat ,equation (1) for (t, x)e (R--(0})R and the initial
condition (2).

Outline of the proof. It is. obvious that the unction v satisfies
(1) 2or (t,x)e (0, c)R and the initial condition (2). Set v(t,z)
E[0(z+)], z= x+iy e C. For t 0, since v(t, z) E[0(z+iB_)],

3v (t z) E[0(x+i(y+
3t

o(z+i(+_

2
v(t,z).

We have the conclusion by taking y=0 in this. equality.
Let t be a 1-dimensional Brownian motion independent o Bt.

Our main result can be summarized in the following theorem.
Theorem 2. For any Uo , the function u(t, x)=[0(x+B)]

is a solution of (5) with the initial condition (2).
Outline of the proof. It is obvious, that the function u satisfies

the initial condition (2). Set u(t, s, x)=[v(s+, x)], (t, s, x) e [0, )

  eorem 1,
3s 2 - uholds. or (s,x) eR

Ot
holds, for (t, ) [0, )XR,

We have the conclusion by taking =0 in this equality.
3. Generalization. Our metho is also alieable to a more

general equation

(al =(, (t, z) (o, x,
where P is a olynomial of degree 2 sueh as
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(9) P(a) pa*+ qa, p >= 0, q e R,
and where A is a uniformly elliptic differential operator of the form

(10) A a,(x) + b,(x)
,= 8XSX = 8X

with bounded continuous coefficients a(x) and b(x). Associated with
A is a d-dimensional diffusion process X,(x) with generator A and with
starting point x e R. Denote by the class, of real-valued functions
f(x) defined on R which are extensible to unctions f(x, y) defined on
RZXR :or some n satisfying the ollowing conditions (11)-(13).

(11) f(x, 0)= f(x), x e R.
(12) There exists

the same type as in (10) defined on R such that (4+)f(x, y)=0.

(13) If(x, y)l exp {-h(xl/lyl)}, 8f (x, y) exp

=1, ...d, and W(x, Y)I exp {--h(Ixl+iyl)}, ]-1, ...,n, are bounded
8y

on RXR for each h>0.
Denote by -t an n-dimensional diffusion process with the generator
starting from 0 e Rn, and define a (d+ n)-dimensional stochastic process
{Xt(x)}teR,,xeRCl by

(x) [(x,(x), o), t >__ o,
[(X, 2_t) tO.

Let } be a l-dimensional Brownian motion independent of Xt(x), and
set Y, /-,+ qt. Then, we have the following theorem as a general-
ization of Theorem 2.

Theorem :. For any Uo e 2, the function u(t, x)=E[o(X,(x))]
is a solution of (8) with the initial condition (2).

This theorem can be proved in a similar way to Theorem 2.
Repeating these procedures to replace the time variable t with inde-

pendent Brownian motions, we can construct a solution of (8)for a
polynomial P(a) of degree 2 expressed in the form

(14) P(a) P P2 P(a), P(a) =pa +qa (i= 1, 2, ., m).
4. Remarks. Finally, we note that our method is in line with

Bochner’s subordination. Bochner’s subordination reads as follows
([1], [3]). Let {Tt}t>=o be a semi-group defined on some Banach space,
and let {l’t(dx)}t>o be a family of infinitely divisible probability distri-
butions supported by [0, co) such that there is a function satisfying

(15) :e-Ft(dx)=e-* oreveryt.

If we define {Tt*}_0 by

(16) Tt*=; TFt(ds),
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then {T*}_0 is again a semi-group and the generator is --(--A), where
A is the generator of {Tt}_0.

In our case where the support of the subordinator {Yt}t>o is all over
R, we must construct {T}te, as a group instead of a semi-group such
as in Theorem 1. The advantage o our method, although the class
of initial functions is smaller than analytic methods, is to obtain the
visualized expression of the solution (Theorems 2 and 3).

These results will be published elsewhere with a detailed proof.
Note. K. Hochberg [2] discusses the same type of equations as

ours by a different probabilistic method by using a signed measure
over a path space.
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