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Note on Certain Nonlinear Evolution Equations
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(Communicated by K6saku YOSIDA, M. J. A., May 12, 1979)

1. Introduction. In this. note we consider nonlinear evolution
equations of the form
(1.1) u’(t)-C-Au(t)+B(t)u’(t)= f(t), O<_t<_T,
with initial conditions.
(1.2) u(0)=u0 and u’(O)=ul,
(u’(t) du(t) / dr, u"(t) du(t) / dV), where A is a nonlinear operator and
each B(t) is, a formally self-adjoint positive operator.

When B(t)----O, there are a great number of results on non-existence
of global weak solutions of (1.1) (see e.g. Knops-Straughan [4] and the
cited papers therein). However, as, for the existence of a global weak
solution for an abstract Cauchy problems (1.1) and (1.2), where A is. a
genuinely nonlinear operator, it seems that there are few results ex-
cept for Tsutsumi’s [8]. He obtained sufficient conditions for the global
existince under the presence of the dissipative term B(t)u’(t).

The purpose of the present note is to show the existence of a global
weak solution of (1.1) and (1.2) satisfying a certain inequality of energy
type. Especially, we intend to weaken the assumptions of Tsutsumi
[8] so that the result can be applied to a wider class of nonlinear partial
differential equations.

2. Assumptions and result. Let H be a real separable Hilbert
space with inner product (-, .) and norm I. I. Let W be a second real
separable Hilbert space with norm I" I and let V be a real separable
reflexive Banach space with norm I. I. Suppose that

VcWcH,
where each injection is dense and continuous. Furthermore, the in-
jection of W into H is compact. As. usual, we identify H with its own
dual and denote by V* and W* the dual spaces of V and W, respectively.
Then the following inclusion relation holds"

VcWcHW*cV*.
The pairing between x* e V* (resp. x*e W*) and x e V (resp. x e W) is
simply denoted by (x*, x) if x, x* e H, this is. the ordinary inner
product in H.

Throughout this note we put the following assumptions on the
nonlinear operator A" V-.V*.
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(A. 1) For each u e V, Au e V* is. the GAteaux differential
convex unctional F at u, which is lower semicontinuous on V.

(A. 2) For each c 0, {u e V F(u) =< c} is bounded in V.
(A. 3) A maps every bounded set of V into bounded set o V*.
For the linear operator B()’ W--*W*, we assume the ollowing.
(B. 1) For each e [0, T], B() is a linear operator associated with

a symmetric bilinear orm b($;., .) on W, which satisfies.
[b(;u,v)[<=b[u[w[V[w and b(t;

for Vu, v e W,
where b and b are some positive constants, independent of t.

(B. 2) For each u, v e W, tb(t u, v) is continuously differentiable
on [0, T] and (t u, v) (--db(t; u, v)/dt) has. the following property" If
u-u weakly in W as n--c, then limup (t;u, u)<=$(t;u, u) or
every t e [0, T].

Under these assumptions we have the main result.
Theorem 2.1. Let Uo e V, u H and f e L(O, T H). Then there

exists a function u such that
(2.1) u e L(0, T V),
(2.2) u’ e L(0, T H) L(0, T W),
(2.3) u" e L(0, T; V*),
and satisfies (1.1), (1.2) and the following inequality; for any positive

function e C1[0, T]

(t)E(u(t)) /.[: (r)b(r u’(r), u’(r))dr

(2.4) <=(s)E(u(s)) +i ’(r)E(u(r))dr/i (r)(f(r), u’(r))dr,

a.e.
where

1E(u(t)) - lu’(t)1+ F(u(t)).

Remark 2.2. I the injection o V into W is also compact, then
the conclusion of Theorem 2.1 holds true with (B. 2)replaced by the
ollowing weaker assumption"

(B. 2)’ For each u, v e W, tb(t; u, v) is, continuous on [0, T].
Remark 2.:. Our assumptions (A. 1)-(A. 3) generalize the cor-

responding ones o Tsutsumi [8]; in particular, it is unnecessary to
assume the homogeneity condition of A.

3. Outline o the prooo First we shall prepare some lemmas
to prove Theorem 2.1.

Lemma .1. A is a maximal monotone and demicontinuous oper-
ator from V to V*.

Proof. By (A. 1), it is easily shown that A is a maximal monotone
operator from V to V* (see e.g. Burbu [1, Chap. 2, 2]). So the demi-
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continuity of A follows from the result of Rockafellar [7, Cor. 1.1].
Lemma 3.2. Let u e C1([0, T] V). Then

d .F(u(t))-- (Au(t) --u()) for every t e [O, T].
dt

Proof. By the definition of the subdifferential (see e.g. [1]),
(Au(t+ h), u(t+ h)--u(t)) >=F(u(t+ h))-F(u(t))

(3.1) >= (Au(t), u(t+ h)-u(t)).
Dividing (3.1) by h and letting h-0, we obtain the conclusion. (Note
that tAu(t) is weakly continuous in V* by Lemma 3.1.)

Let lgp=<c. We recall the act that, or any u e L(0, T; V),
tAu(t) is strongly measurable in V* by Lemma 3.1 and the resul of
Brezis [2, Appendice IV]. Define the operator " L(0, T; V)-*
L"(O, T V) (1 /p / 1/p’= 1) with the domain D() as ollows

D()-- (u Lp(O, T V) Au e Lp’(O, T V*)}
(u)(t)=Au(t) for a.e. t e [0, T].

Then we have the following lemma whose proo can be found in [2,
Appendice I].

Lemma .. is a maximal monotone operator from L(O, T V)
to L’(O, T; V*).

Now we shall begin the proof of Theorem 2.1. It is very standard,
so we only sketch it here. For details, see Tsutsumi [8].

We employ the Galerkin’s method and take {w.} as the basis. Define
approximate functions u(t)as follows;

u(t) , a(t)w,
where unknown functions a are determined by the following ordinary
differential equations

(u(t), w)+(Au(t), w)+b(t u’(t), w)=(f(t), w),
] 1, 2, ., m,

with initial conditions

u(0) =u0,, u0.= wuo
j=l

strongly in V as m,

u(0)=u,, u,= F, w-u
strongly in H as m-o.

Having proved Lemmas 3.2 and 3.3, we can repeat the same
procedure as in [8] with an obvious modification. We can, therefore,
extract a subsequence {u,} o {u}, which converges (in the sense of [8])
to a weak solution u of (1.1) and (1.2) satisfying (2.1)-(2.3). Note that
the convergence properties of {u,} in [8, (2.14)-(2.23)] still remain true.

To prove that the weak solution u satisfies (2.4), we use the follow-
ing lemma which is obtained as a consequence of the above proof (cf.
[9, 4.2]).
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Lemma 3.4. For any function e C[O, T] and t e [0, T],

(3.2) lim : (s)(Au(s), u(s))ds=f: (s)(Au(s), u(s))ds.

Now we note that the iollowing inequality holds by (A. 1)"
(3.3) F(u(t)) F(u(t)) >= (Aug(t), u(t) u,(t)), vte [0, T].
Hence, with the help o (3.3) and the lower semicontinuity oi F, (3.3)
leads to the following" For any unction e C[0, T] and t e [0, T],

(3.4) lim : (s)F(u(s))ds=;: (s)F(u(s))ds,
which, in particular, implies that
(3.5) lim inf F(u(t))=F(u(t)) or a.e. t e [0, T].

Recall that the equality in (2.4) holds true for O<_s<_t<=T if u is
replaced by u, (use Lemma 3.2). Hence taking the inferior limit of
the both sides of the resulting expression and using the convergence
properties (3.4), (3.5) and [8, (2.15), (2.23)], we see that u satisfies (2.4).

4. Applications. Let 9 be a bounded domain in R with smooth
boundary F. We consider the following two examples.

Example 4.1. Let J() be a convex Cl(R)-function satisfying
e

laJ()/l<,(ll’-’-+ 1), v e R, i= 1, 2, ..., n,
with

Set

p>=2, a,, a,a>0 and Il=, .
i=1

a() 8J() /8, i= 1, 2, ..., n.
We consider the following initial boundary value problem

8 u 8 8u
-v(a(grad u))- b f in 9 X [0, T],

u(x, t)= 0 on F [0, T],

u(x, O)-uo(X) u (x 0)=u(x) in 9,

where f, u0 and u are given functions and b e C[0, T] is a monotone
non-increasing positive function (cf. Tsutsumi [8]).

Take H=L(9), V= W,(9) and W=H(9). I2 we put

F(u) =_[, J(grad u(x))dx,

we easily see that our hypotheses are satisfied. Thus we can apply
Theorem 2.1 to the above problem.

xample 4.2. Next we consider nonlinear partial integro-differ-
ential equations o the form

3u M( Igradu(z)dz)A-b(t)A=f in DN [0, T],
Ot

with the same initial and boundary conditions as Example 4.1 (cf.
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Dickey [3], Medeiros [5] and Pohozaev [6]). Suppose that M is a con-
tinuous and monotone non-decreasing function on [0, ) satisfying

M(0)0 and :M(r)dr=c.
Take H L(9) and V W H(tg) and define

(r)=i M(s)ds.

Then putting
1 dx),FA(u) ( grad u(x)

we can apply Theorem 2.1. In this example, it is easily seen that the
equality in (2.4) holds true. Furthermore, if M is a C1[0, oo)-function
satisfying M(0)0, we can derive the uniqueness of weak solutions.
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