37. A Version of the Central Limit Theorem for Martingales

By Shigeru Takahashi
Department of Mathematics, Kanazawa University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1979)
§ 1. Introduction. In the present note let $\left\{X_{n}, \mathscr{F}_{n}\right\}$ be a zeromean square-integrable martingale on a probability space (Ω, \mathscr{F}, P) and let $Y_{1}=X_{1}, Y_{n}=X_{n}-X_{n-1}(n \geqq 2)$. Then our purpose is to prove the following

Theorem. Suppose that there exist a sequence $\left\{A_{n}\right\}$ of positive numbers for which $\lim _{n \rightarrow+\infty} A_{n}=+\infty$ and a random variable $Z(\omega)$ such that
(L-I) for any given $\varepsilon>0, \lim _{n \rightarrow+\infty} A_{n}^{-2} \sum_{k=1}^{n} E\left\{Y_{k}^{2} I\left(\left|Y_{k}\right| \geqq \varepsilon A_{n}\right)\right\}=0$,*)
(L-II) $\lim _{n \rightarrow+\infty} A_{n}^{-2} \sum_{k=1}^{n} Y_{k}^{2}=Z$, in probability.
Then for any set $F \in \sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)$ and any real number $x(x \neq 0)$

$$
\lim _{n \rightarrow+\infty} P\left\{F, X_{n}(\omega) / A_{n} \leqq x\right\}=(2 \pi)^{-1 / 2} \int_{F}\left\{\int_{-\infty}^{x / \sqrt{\bar{Z}}} \exp \left(-u^{2} / 2\right) d u\right\} d P,
$$

where $\sigma\left(\cup_{n=1}^{\infty} \mathscr{F}_{n}\right)$ denotes the σ-algebra generated by the algebra $\bigcup_{n=1}^{\infty} \mathscr{F}_{n}$ and $x / 0$ is $+\infty($ or $-\infty)$ if x is positive (or negative).

In the important special case when Y_{n} 's are independent and \mathscr{F}_{n} is the σ-algebra generated by $\left\{X_{k}, k \leqq n\right\}$ the condition (L-I) for A_{n}^{2} $=E X_{n}^{2}$ is called Lindeberg's condition for the central limit theorem and in this case (L-I) implies (L-II) with $Z(\omega)=1$. But in general (L-I) does not imply (L-II) and even if the conditions (L-I) and (L-II) are satisfied the limit Z is not necessarily a constant. When $Z(\omega)$ is a constant, the central limit theorems are proved by many authors (cf. [1]).

As an application of Theorem we can prove the central limit theorem for $\left\{X_{n}\right\}$. In fact we prove the following

Corollary. Under the conditions (L-I) and (L-II) if $P\{Z(\omega) \neq 0\}>0$, then we have for any real number x

$$
\lim _{n \rightarrow+\infty} P\left\{X_{n}(\omega) / A_{n} \leqq x \sqrt{Z(\omega)} \mid Z(\omega) \neq 0\right\}=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right) d u .
$$

In § 2 we prove Theorem. By Lévy's continuity theorem it is enough to show that, for any fixed real number λ,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{F} \exp \left(i \lambda X_{n} / A_{n}\right) d P=\int_{F} \exp \left(-\lambda^{2} Z / 2\right) d P \tag{1.1}
\end{equation*}
$$

The right hand side of the above formula is the Fourier-Stieltjes transform of the function $(2 \pi)^{-1 / 2} \int_{F}\left\{\int_{-\infty}^{x / \sqrt{Z}} \exp \left(-u^{2} / 2\right) d u\right\} d P,-\infty<x$

[^0]$<+\infty$.
§2. Proof of Theorem. By the condition (L-I) there exists a sequence $\left\{\varepsilon_{n}\right\}$ of positive numbers such that
\[

\left\{$$
\begin{array}{l}
2 \varepsilon_{m} \leqq 1 \text { for all } m, \varepsilon_{n} \rightarrow 0, \sum_{k=1}^{n} P\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right) \rightarrow 0 \quad \text { and } \tag{2.1}\\
A_{n}^{-2} \sum_{k=1}^{n} E\left\{Y_{k}^{2} I\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right)\right\} \rightarrow 0, \quad \text { as } n \rightarrow+\infty .
\end{array}
$$\right.
\]

Using this sequence $\left\{\varepsilon_{n}\right\}$ let us put for $k \geqq 1$ and $n \geqq 1$

$$
Y_{k, n}=Y_{k} I\left(\left|Y_{k}\right|<\varepsilon_{n} A_{n}\right)-E\left\{Y_{k} I\left(\left|Y_{k}\right|<\varepsilon_{n} A_{n}\right) \mid \mathcal{F}_{k-1}\right\} .
$$

Then for each $n,\left\{Y_{k, n}, \mathscr{F}_{k}, k \geqq 1\right\}$ is a martingale difference sequence.
Lemma 1. We have
(i) $\lim _{n \rightarrow+\infty} A_{n}^{-1} \sum_{k=1}^{n}\left|Y_{k}-Y_{k, n}\right|=0$, in $p r$.,
(ii) $\lim _{n \rightarrow+\infty} A_{n}^{-2} \sum_{k=1}^{n} Y_{k, n}^{2}=Z$, in $p r$.

Proof. Since $\left|E\left\{Y_{k} I\left(\left|Y_{k}\right|<\varepsilon_{n} A_{n}\right) \mid \mathscr{F}_{k-1}\right\}\right|=\left|E\left\{Y_{k} I\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right) \mid \mathcal{F}_{k-1}\right\}\right|$, we have by (2.1)

$$
\begin{array}{rl}
A_{n}^{-1} \sum_{k=1}^{n} & E\left|Y_{k}-Y_{k, n}\right| \leqq 2 A_{n}^{-1} \sum_{k=1}^{n} E\left|Y_{k} I\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right)\right| \\
& \leqq 2 A_{n}^{-1} \sum_{k=1}^{n}\left\{P\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right) E Y_{k}^{2} I\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right)\right\}^{1 / 2} \\
& \leqq 2\left\{\sum_{k=1}^{n} P\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right)\right\}^{1 / 2}\left\{A_{n}^{-2} \sum_{k=1}^{n} E Y_{k}^{2} I\left(\left|Y_{k}\right| \geqq \varepsilon_{n} A_{n}\right)\right\}^{1 / 2} \rightarrow 0 \\
\quad \operatorname{as~} n \rightarrow+\infty,
\end{array}
$$

and we can prove the first part. Next we have

$$
A_{n}^{-2} \sum_{k=1}^{n}\left|Y_{k}^{2}-Y_{k, n}^{2}\right| \leqq \max _{1 \leq k \leq n}\left(\left|Y_{k}\right|+\left|Y_{k, n}\right|\right) A_{n}^{-2} \sum_{k=1}^{n}\left|Y_{k}-Y_{k, n}\right| .
$$

Therefore, we can prove (ii), by (2.1), (i) and (L-II).
Now for any fixed positive number M and $n \geqq 1$ let us put

$$
S_{n}(\omega, M)=S_{n}(\omega)=\left\{\begin{array}{l}
+\infty, \quad \text { if } \sum_{k=1}^{\infty} Y_{k, n}^{2}(\omega) \leqq M A_{n}^{2}, \\
\min \left\{m ; \sum_{k=1}^{m} Y_{k, n}^{2}(\omega)>M A_{n}^{2}\right\}, \quad \text { otherwise } .
\end{array}\right.
$$

Then for each $n, S_{n}(\omega)$ is a stopping time with respect to $\left\{\mathscr{F}_{k}\right\}$ and

$$
\begin{equation*}
S_{n}(\omega) \geqq M / 4 \varepsilon_{n}^{2} \tag{2.2}
\end{equation*}
$$

because $\left|Y_{k, n}(\omega)\right| \leqq 2 \varepsilon_{n} A_{n}$. Next we put, for $k=1,2, \cdots, n$ and $n=1,2$,

$$
\hat{Y}_{k, n}=Y_{k, n} I\left(S_{n} \geqq k\right) \quad \text { and } \quad \mathscr{F}_{k, n}=\mathscr{F}_{\min \left(k, S_{n}\right)} .
$$

Then for each $n,\left\{\hat{Y}_{k, n}, \mathscr{F}_{k, n}, k \geqq 1\right\}$ is a martingale difference sequence (cf. [2, p. 300]) and by (2.1) and (2.3), we have

$$
\begin{equation*}
A_{n}^{-2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2} \leqq M+4 \varepsilon_{n}^{2} \leqq M+1 \tag{2.4}
\end{equation*}
$$

In the following let λ denote any fixed real number and

$$
P_{k, n}(\omega, \lambda)=P_{k, n}(\omega)=\prod_{j=1}^{k}\left(1+i \lambda \hat{Y}_{j, n}(\omega) A_{n}^{-1}\right) .
$$

Lemma 2. We have, for any set $F \in \sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)$,

$$
\lim _{n \rightarrow+\infty} \int_{F} P_{n, n}(\omega) d P=P(F)
$$

Proof. Since $\left|P_{k, n}\right|^{2} \leqq \exp \left(\lambda^{2} A_{n}^{-2} \sum_{j=1}^{k} \hat{Y}_{j, n}^{2}\right)$, (2.4) implies that

$$
\begin{equation*}
\left|P_{k, n}\right|^{2} \leqq \exp \left\{\lambda^{2}(M+1)\right\}, \quad \text { for } 1 \leqq k \leqq n \text { and } n \geqq 1 \tag{2.5}
\end{equation*}
$$

On the other hand from the theory of measure it follows that if $F \in \sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)$, then for any given $\varepsilon>0$ there exists a set G such that $P\{F \Delta G\}<\varepsilon$ and $G \in \bigcup_{n=1}^{\infty} \mathscr{F}_{n}$. Therefore, by (2.5) and the above fact it suffices to prove the lemma for any set $F \in \mathscr{F}_{m}$ where m is any fixed positive integer. Hereafter we assume that $F \in \mathcal{F}_{m}$. Then by (2.2) it is seen that
(2.6) $\quad F \in \mathscr{F}_{k, n}$, for all (k, n) such that $m \leqq k$ and $m \leqq M / 4 \varepsilon_{n}^{2}$.

Hence by (2.1), (2.6) and (2.5), we have for sufficiently large n

$$
\begin{aligned}
\int_{F} P_{n, n}(\omega) d P & =\int_{F}\left\{1+\sum_{k=1}^{n} i \lambda \hat{Y}_{k, n}(\omega) A_{n}^{-1} P_{k-1, n}(\omega)\right\} d P \\
& =P(F)+\sum_{k=1}^{m} \int_{F} i \lambda \hat{Y}_{k, n}(\omega) A_{n}^{-1} P_{k-1, n}(\omega) d P \\
& =P(F)+O\left(m\left|\varepsilon_{n} \lambda\right|\left(1+\left|2 \varepsilon_{n} \lambda\right|\right)^{m-1}\right) \\
& =P(F)+o(1), \quad \text { as } n \rightarrow+\infty .
\end{aligned}
$$

Lemma 3. We have, for any set $F \in \sigma\left(\cup_{n=1}^{\infty} \mathscr{F}_{n}\right)$,

$$
\lim _{n \rightarrow+\infty} \int_{F} \exp \left(i \lambda \sum_{k=1}^{n} \hat{Y}_{k, n} / A_{n}\right) d P=\int_{F} \exp \left(-\lambda^{2} Z_{M} / 2\right) d P
$$

where $Z_{M}(\omega)=\min \{Z(\omega), M\}$.
Proof. From (2.3) and (2.1) it is seen that

$$
\begin{array}{ll}
A_{n}^{-2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2}=A_{n}^{-2} \sum_{k=1}^{n} Y_{k, n}^{2}, & \text { if } S_{n}(\omega, M) \geqq n \\
M<A_{n}^{-2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2} \leqq M+4 \varepsilon_{n}^{2}, & \text { if } S_{n}(\omega, M)<n
\end{array}
$$

Therefore, (ii) in Lemma 1 and (2.1) imply that

$$
\lim _{n \rightarrow+\infty} A_{n}^{-2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2}=Z_{M}, \quad \text { in pr. }
$$

Hence, by (2.5)

$$
\lim _{n \rightarrow+\infty} E\left|P_{n, n}\left\{\exp \left(-\lambda^{2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2} / 2 A_{n}^{2}\right)-\exp \left(-\lambda^{2} Z_{M} / 2\right)\right\}\right|=0
$$

On the other hand since Lemma 2 and (2.5) imply that

$$
\lim _{n \rightarrow+\infty} \int_{F} P_{n, n} \exp \left(-\lambda^{2} Z_{M} / 2\right) d P=\int_{F} \exp \left(-\lambda^{2} Z_{M} / 2\right) d P
$$

we have
(2.7) $\lim _{n \rightarrow+\infty} \int_{F} P_{n, n} \exp \left(-\lambda^{2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2} / 2 A_{n}^{2}\right) d P=\int_{F} \exp \left(-\lambda^{2} Z_{M} / 2\right) d P$.

Further it is easily seen that if $|x|<1 / 2$, then

$$
\exp (x)=(1+x) \exp \left\{\left(x^{2} / 2\right)+\theta(x)\right\} \text { and }|\theta(x)| \leqq|x|^{3} .
$$

Therefore, by (2.1) and (2.4)

$$
\left|\sum_{k=1}^{n} \theta\left(i \lambda \hat{Y}_{k, n} / A_{n}\right)\right| \leqq 2 \varepsilon_{n} \mid \lambda \lambda^{3}(M+1)=o(1), \quad \text { as } n \rightarrow+\infty,
$$

and since $\left|P_{n, n} \exp \left(-\lambda^{2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2} / 2 A_{n}^{2}\right)\right| \leqq 1$, we have

$$
\begin{aligned}
\exp \left(i \lambda \sum_{k=1}^{n} \hat{Y}_{k, n} A_{n}^{-1}\right) & =P_{n, n} \exp \left\{-\lambda^{2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2} / 2 A_{n}^{2}+\sum_{k=1}^{n} \theta\left(i \lambda \hat{Y}_{k, n} / A_{n}\right)\right\} \\
& =P_{n, n} \exp \left(-\lambda^{2} \sum_{k=1}^{n} \hat{Y}_{k, n}^{2} / 2 A_{n}^{2}\right)+o(1),
\end{aligned}
$$

uniformly on Ω, as $n \rightarrow+\infty$.

Thus by the above relation and (2.7) we can prove the lemma.
Lemma 4. We have, for any set $F \in \sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)$,

$$
\lim _{n \rightarrow+\infty} \int_{F} \exp \left(i \lambda \sum_{k=1}^{n} Y_{k} / A_{n}\right) d P=\int_{F} \exp \left(-\lambda^{2} Z / 2\right) d P
$$

Proof. By (i) in Lemma 1 it is enough to show that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{F} \exp \left(i \lambda \sum_{k=1}^{n} Y_{k, n} / A_{n}\right) d P=\int_{F} \exp \left(-\lambda^{2} Z / 2\right) d P . \tag{2.8}
\end{equation*}
$$

If we put $E_{M}=\{Z(\omega)>M\}$ and $E_{n, M}=\left\{A_{n}^{-2} \sum_{k=1}^{n} Y_{k, n}^{2}(\omega)>M\right\}$, then (ii) in Lemma 1 implies that $P\left(E_{n, M}\right) \rightarrow P\left(E_{M}\right)$ as $n \rightarrow+\infty$, at the continuity points M of $P\left(E_{M}\right)$. Therefore, for any given $\varepsilon>0$ we can take M and n_{0} such that

$$
P\left(E_{M}\right)<\varepsilon \quad \text { and } \quad P\left(E_{n, M}\right)<\varepsilon \quad \text { if } n \geqq n_{0} .
$$

Since $\omega \in E_{n, M}^{c}$ and $k \leqq n$ imply that $\hat{Y}_{k, n}(\omega)=Y_{k, n}(\omega)$, we have for $n \geqq n_{0}$

$$
\left\{\begin{array}{l}
E\left|\exp \left(i \lambda \sum_{k=1}^{n} \hat{Y}_{k, n} / A_{n}\right)-\exp \left(i \lambda \sum_{k=1}^{n} Y_{k, n} / A_{n}\right)\right|<2 \varepsilon, \\
E\left|\exp \left(-\lambda^{2} Z_{M} / 2\right)-\exp \left(-\lambda^{2} Z / 2\right)\right|<\varepsilon .
\end{array}\right.
$$

Thus by Lemma 3 and above relations we can prove (2.8).
By Lemma 4 (1.1) holds and Theorem is proved.
§3. Proof of Corollary. For simplicity of writing the formulas we prove Corollary only for positive x. Let $\varepsilon(0<\varepsilon<1)$ be any given number and put for $k=0, \pm 1, \pm 2, \cdots$ and $h(0<2 h<\varepsilon)$

$$
a(k)=\exp (k h) \quad \text { and } E_{k}=\{a(k) \leqq \sqrt{Z(\omega)}<\alpha(k+1)\} .
$$

Then clearly E_{k} 's are disjoint sets in $\sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)$ and $\bigcup_{k=-\infty}^{\infty} E_{k}=\{Z(\omega)$ $\neq 0\}$. Therefore we have, by Theorem, $\varlimsup_{n \rightarrow+\infty} P\left\{X_{n} / A_{n} \leqq x \sqrt{Z}, Z \neq 0\right\}$

$$
\begin{aligned}
& \leqq \sum_{|k|<m_{0}} \lim _{n \rightarrow+\infty} P\left\{X_{n} / A_{n} \leqq x a(k+1), E_{k}\right\}+\sum_{|k| \backslash m_{0}} P\left(E_{k}\right) \\
& \leqq \sum_{k=-\infty}^{\infty}(2 \pi)^{-1 / 2} \int_{E_{k}}\left\{\int_{-\infty}^{x a(k+1) / \sqrt{Z}} \exp \left(-u^{2} / 2\right) d u\right\} d P+\sum_{|k| \geqq m_{0}} P\left(E_{k}\right),
\end{aligned}
$$

and in the same way $\varliminf_{n \rightarrow+\infty} P\left\{X_{n} / A_{n} \leqq x \sqrt{Z}, Z \neq 0\right\}$

$$
\geqq \sum_{k=-\infty}^{\infty}(2 \pi)^{-1 / 2} \int_{E_{k}}\left\{\int_{-\infty}^{x a(k) / \sqrt{Z}} \exp \left(-u^{2} / 2\right) d u\right\} d P-\sum_{|k| \geq m_{0}} P\left(E_{k}\right) .
$$

Since $x \exp \left(-x^{2} / 2\right)<1$ for $x>0$, we have

$$
\begin{aligned}
\sum_{k} \int_{E_{k}}\{ & \left\{\int_{x a(k) / \sqrt{Z}}^{x a(k+1) / \sqrt{Z}} \exp \left(-u^{2} / 2\right) d u\right\} d P \\
& \leqq \sum_{k} \int_{E_{k}}\left(e^{h}-1\right)(x a(k) / \sqrt{Z}) \exp \left\{-x^{2} a^{2}(k) / 2 Z\right\} d P \\
& \leqq \sum_{k} 2 h P\left(E_{k}\right)<\varepsilon P(Z \neq 0)<\varepsilon .
\end{aligned}
$$

Since $x a(k) / \sqrt{Z} \leqq x<x a(k+1) / \sqrt{Z}$ on E_{k} and we can take m_{0} so large that $\sum_{|k| \geqq m_{0}} P\left(E_{k}\right)<\varepsilon$, Corollary is proved.

References

[1] B. M. Brown: Martingale central limit theorems. Ann. Math. Stats., 42, 59-66 (1971).
[2] J. L. Doob: Stochastic Processes. John Wiley and Sons, New York (1953).

[^0]: *) $\quad I(A)$ denotes the indicator of the set A.

