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1. Introduction. In the present note let {Xn, n} be a zero-
mean square-integrable martingale on a probability space (/2, , P) and
let Y---- X,, Y--Xn--X_ (n_>_: 2). Then our purpose is to prove the
2ollowing

Theorem. Suppose that there exist a sequence {A} of positive
numbers for which limn_+ An-- --c and a random variable Z(o) such
that

(L-I) for any given 0, lim+ A; E{YI( YIA)}=0,*
(L-II) lim+ A; Y}=Z, in probability.

Then for any set F e a(n%,) and any real number x (xO)

lim P{N, X()/Az}=(2)-/ ex (--/2)d gP,
+ F

where a(=) denotes the a-algebra generated by the algebr

= and x/O is + (or --) if x is positive (or negative).
In the important special case when Y’s are independent and

is the a-algebra generated by {X, kn} the condition (L-I) or A
=EX is called Lindeberg’s condition or the central limit theorem
and in this case (L-I) implies. (L-II) with Z(w)= 1. But in general (L-I)
does not imply (L-II) and even i the conditions (L-I) and (L-II) are
satisfied the limit Z is not necessarily a constant. When Z() is a con-
stant, the central limit theorems, are proved by many authors. (cf. [1]).

As an application of Theorem we can prove the central limit theo-
rem or {X}. In act we prove the following

Corollary. Under the conditions (L-I) and (L-II) if P{Z(w) 0}> 0,
then we have for any real number x

lim P{X(w)/AxJZ(w)]Z(w)O}=(2)-/- exp (-u/2)du.
In 2 we prove Theorem. By L6vy’s continuity theorem it is

enough to show that, or any fixed real number 2,

(1.1) +lim ex (i2Z/A)dP= ex
he righ hand side of he above formula is he Pourier-Stieltjes

transform of the function (2)-/ ex (-/)d dP, <
*) I (A) denotes the indicator of the set A.
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2. Proof of Theorem. By the condition (L-I) there exists a
sequence } of positive numbers such that

2e<_ 1 for all m, --0, ,_ P(I YIeA)--0 and
as

Using this sequence {en} let us put for k1 and n1
E{

Then for each n, {Y,, ff, 1} is a martingale difference sequence.
Lemma 1. We have
(i) lim_+ A; = [Y-- Y,]=O, in pr.,
(ii) lim+ A; = Y,=Z, in pr.
Proof. Since E{YI(IY<A) _}=E{YI(YA) _},

we have by (2.1)

A; E]Y--Y,n]2A; E]YI(]Y]eA)I
k=l k=l

2A; {P(] YeA)EYI( YenAn)}1/

2 P(YIzA) A = EYI( Y]znAn)) 0,

asn,
and we can prove the first part. Next we have

A; ]Y-Y,] max (]Y]+]Y,])A; ]Y--Y,].
k=l lkn k=l

Therefore, we can prove (ii), by (2.1), (i) and (L-II).
Now for any fixed positive number M and n1 let us put

S(w, M)=Sn(w)= [min {m =x Y,(w) >MAn}, otherwise."
Then for each n, S(w) is a stopping time with respect to {ff} and
(2.2) S(w)M/4e
because Y,,(w)]2An. Next we put, for k= 1, 2, ., n and n= 1, 2,

(2.3) ,n=Y,I(Sk) and ff,n
Then for each n, {Y,, ,n, kl} is a martingale difference sequence
(cf. [2, p. 300]) and by (2.1) and (2.3), we have

(2.4) A; ?,nM+4M+ 1.
k=l

In the following let 2 denote any fixed real number and

P,n(W, 2) P,(w) (1+ i2Y,n(w)A;).
j=l

Lemma 2. We have, for any set F e a(=),

lim [ Pn,(w)dP=P(F).

Proof. Since ]P,n]exp (2A; = Y,n), (2.4) implies that
(2.5) ]P,lexp {2(M+ 1)}, for lkn and nl.
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On the other hand from the theory of measure it follows that if
F e a(J:=), then for any given 0 there exists a set G such that
P(FG} and G e :__ ff. Therefore, by (2.5) and the above fact it
suffices to prove the lemma for any set F e ff where m is any fixed
positive integer. Hereafter we assume that F e ff. Then by (2.2) it
is seen that
(2.6) F e ,n, for all (k, n) such that mk and mM/4.
Hence by (2.1), (2.6) and (2.5), we have for sufficiently large n

Pn,n(w)dP= 1 + i?,(w)A;P_,n(W) dP
F F k=l

=P(N)+ i2,()Aglp-,()gP
=1

P(F)+O(m sfl (1 +12efl I)-)
=P(F)+o(1), as n+.

Lemma . We have, for any set F e a(:: n),

where Z(w)=min {Z(w), M}.
Proof. From (2.3) and (2.1) it is seen that

A; Y,=A; Y,n, if S(w, M)n,
k=l k=l

Therefore, (ii) in Lemma I and (2.1) imply that

lim A; ,=Z,, in pr.

Hence, by (2.5)

lim N P, exp --2 Y,/2A -exp (-2Z/2) =0.

On the oher hand since Lemma 2 and (2.g) imply tha

lim P, exp (--2Z/2)gP= exp

we have

(2 7) lira P exp 2,n Y,/2A dP= exp (--2Z/2)dP.
n+ k=l F

Further it is easily seen that ix] 1/2, then
exp (x)=(l+x) exp{(x/2)+0(x)} and 10(x)llxl .

Therefore, by (2.1) and (2.4)

O(if,n/An) 2slfl(M+l)=o(1), as no+,
k=l

and since IP,n exp (--2= ,/2A)]1, we have

exp(if,nA;) P exp{ 2 }k=l k=l k=l

(=P, exp 2 Y,n/2A + o(1),
k=l

uniformly on 9, as n+.
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Thus. by the above relation and (2.7) we can prove the lemma.
Lemma 4. We have, for any set F e a([,J=l n),

lim exp (i] Y/An)dP- exp (-Z/2)dP.
+ F k=l

Proof. By (i) in Lemma 1 it is enough to show that

If we put E={Z(w)>M} and E,=(A; : Y,n(W)>M}, then (ii) in
Lemma 1 implies, that P(E,)P(E) as n+, at the continuity
points M o P(E). Therefore, for any given e0 we can take M and
n0 such that

P(E) e and P(E,) i nno.
Since w e E, and kgn iply that ,n(W)= Y,(o), we have or nno

E exp (i2= Y,n/An)--exp (i2= Y,n/A)l<2,
Elexp (-- 2Z/2)--exp

Thus by Lemma 3 and above relations we can prove (2.8).
By Lemma 4 (1.1) holds, and Theorem is proved.. Proof of Corollary. For simplicity of writing the formulas

we prove Corollary only for positive x. Let (01) be any given
number and put for k=0, 1, 2, and h (02he)

a(k)=exp (kh) and E={a(k)gZ(O<a(k+l)}.
Then clearly E’s are disjoint sets in a(:= ff) and =_E {Z(w)
0}. Therefore we have, by Theorem,
lim P{Z/AngxZ, Z 0}

g lim P{X/Anxa(k+I), E}+ P(E)
]k]mo ]k]mo

g (2) -1/ exp(-u/2)du dP+ P(E),
k=- Ek Iklm0

and in the same way
lim P(X/Agx,

{i(2) -/ exp (--u/2)du dP- E P(E).

Since xexp (--x/2)1 for xO, we have

()/

(e 1)(a( a(l/z}Pex{-

Since za() /Nz<za(+ 1) /N on N and we can ake m0 so large
tha a.P(N)<s, Corollary is roved.
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