59. Isomorphism Criterion and Structure Group Description for R-Semigroups

By James M. Lord
University of California, Davis
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1979)

o. Introduction. A commutative cancellative archimedean semigroup without idempotents is called an \mathfrak{n}-semigroup. In this paper, necessary and sufficient conditions are given for two \mathfrak{l}-semigroups to be isomorphic and the structure groups of an \mathfrak{N}-semigroup are completely described. M. Sasaki did some related work in [1], but the results given here are simpler. In [2], T. Tamura obtained an isomorphism criterion from a different point of view.

1. Preliminaries. Let S be any \mathfrak{R}-semigroup and let $a \in S$. Define a group-congruence ρ_{a} on S by $x \rho_{a} y$ if and only if $\alpha^{m} x=\alpha^{n} y$ for some $m, n \in Z_{+}$(the positive integers). The group $G_{a}=S / \rho_{a}$ is called the structure group of S with respect to a. Structure group products will be denoted by "*" in this paper. Let $p \in S$. If $p \notin a S, p$ is called a prime (relative to a). Every $x \in S$ has a unique representation $x=a^{k} p$ where $k \in Z_{+}^{0}\left(a^{0} p\right.$ means $\left.p\right)$ and $p \in S$ is a prime. By the fundamental structure theorems for \mathfrak{N}-semigroups [2], we may assume $S=(G ; I)=(G ; \varphi)$, that is, $S=\left\{(x, \xi): x \in Z_{+}^{0}, \xi \in G\right\}$ where $(x, \xi)(y, \eta)$ $=(x+y+I(\xi, \eta), \xi * \eta)$ and $I(\xi, \eta)=\varphi(\xi)+\varphi(\eta)-\varphi(\xi * \eta)$ for all $\xi, \eta \in G$. Let $(m, \alpha) \in S$. The structure group $G_{(m, \alpha)}=S / \rho$ is of major importance in this paper. Observe that $G_{(m, \alpha)}=\{\overline{(x, \xi)}:(x, \xi)$ is prime relative to (m, α) \}. For a more thorough review of $\mathfrak{\Re \text { -semigroups, see [2]. }}$
2. Isomorphism criterion. Theorem 2.1. Let $S=(G ; I)=(G ; \varphi)$ and $\hat{S}=(\hat{G} ; \hat{I})=(\hat{G} ; \hat{\varphi})$. Then S is isomorphic to \hat{S} if and only if there exists $(m, \alpha) \in S$ such that
(2.1.1) $G_{(m, \alpha)}$ is isomorphic to \hat{G} and
(2.1.2) $\hat{\varphi}(\hat{\xi})+\hat{\varphi}(\hat{r})-\hat{\varphi}(\hat{\xi} * \hat{\eta})=(x+\varphi(\xi)+y+\varphi(\eta)-(z+\varphi(\gamma))) /(m+\varphi(\alpha))$ holds for all $\hat{\xi}, \hat{\eta} \in \hat{G}$ where $(x, \xi),(y, \eta)$, and (z, γ) are the unique primes in S relative to (m, α) such that the isomorphism in (2.1.1) carries $\overline{(x, \xi)}, \overline{(y, \eta)}$, and $\overline{(z, \gamma)}$ to $\hat{\xi}, \hat{\eta}$, and $\hat{\xi} * \hat{\eta}$ respectively.

Proof. Necessity. Assume $f: S \rightarrow \hat{S}$ is the isomorphism and let $f(m, \alpha)=(0, \hat{\varepsilon})$. Define $\iota: \hat{G}_{(0, \hat{\varepsilon})} \rightarrow \hat{G}$ by $\iota(0, \hat{\xi})=\hat{\xi}$ and $\hat{f}: G_{(m, \alpha)} \rightarrow \hat{G}_{(0, \hat{\varepsilon})}$ by $\hat{f} \overline{(x, \xi)}=f \overline{(x, \xi)}$. Then $\circ \hat{f}$ is an isomorphism of $G_{(m, \alpha)}$ onto \hat{G}. To prove (2.1.2), let $\hat{\xi}, \hat{\eta} \in \hat{G}$ and let $(x, \xi),(y, \eta)$, and (z, γ) be the primes relative to (m, α) such that $(\iota \circ \hat{f}) \overline{(x, \xi)}=\hat{\xi},(\iota \hat{f}) \overline{(y, \eta)}=\hat{\eta}$, and $(\iota \circ \hat{f}) \overline{(z, \gamma)}$ $=\hat{\xi} * \hat{\eta}$. Then $f(x, \hat{\xi})=(0, \hat{\xi}), f(y, \eta)=(0, \hat{\eta})$, and $f(z, \gamma)=(0, \hat{\xi} * \hat{\eta})$. Define
$\operatorname{a\operatorname {map}} \hat{\varphi}^{\prime}: \hat{G} \rightarrow R_{+}$(the positive reals) by $\hat{\varphi}^{\prime}(\hat{\xi})=(x+\varphi(\xi)) /(m+\varphi(\alpha))$ where $(x, \xi) \in S$ such that $f(x, \xi)=(0, \hat{\xi})$. It can be shown that $\hat{I}(\hat{\xi}, \hat{\eta})=\hat{\varphi}^{\prime}(\hat{\xi})$ $+\hat{\varphi}^{\prime}(\hat{\eta})-\hat{\varphi}^{\prime}(\hat{\xi} * \hat{\eta})$. From this fact, (2.1.2) follows easily.

Sufficiency. Let $g: G_{(m, \alpha)} \rightarrow \hat{G}$ be the isomorphism given in (2.1.1). To simplify the notation, when $(z, \gamma) \in S$ is a prime relative to (m, α), let $\hat{\gamma}_{z}$ denote the element $g \overline{(z, \gamma)}$. Recall that if $(x, \xi) \in S$, there is a unique representation $(x, \xi)=(m, \alpha)^{k}(z, \gamma)$ where $k \in Z_{+}^{0}$ and (z, γ) is a prime. Using this fact, define a map $f: S \rightarrow \hat{S}$ by $f(x, \xi)=\left(k, \hat{\gamma}_{z}\right)$. It is routine to show that f is well defined, one-to-one, and onto. Let $(x, \xi),(y, \eta) \in S$ and suppose $(x, \xi)=(m, \alpha)^{j}(w, \tau),(y, \eta)=(m, \alpha)^{n}(v, \beta)$, and $(x+y+I(\xi, \eta), \xi * \eta)=(m, \alpha)^{k}(z, \gamma)$ where $j, n, k \in Z_{+}^{0}$ and $(w, \tau),(v, \beta)$, (z, γ) are primes. By using the fact that $(w+\varphi(\tau)+(v+\varphi(s)))-(z+\varphi(\gamma))$ $=(-j-n+k)(m+\varphi(\alpha))$, it can be shown that $f(x, \xi) \cdot f(y, \eta)$ $=f((x, \xi)(y, \eta))$.
3. The structure groups. Let $S=(G ; I)=(G ; \varphi)$ where ε is the identity of G.

Lemma 3.1. Let $(x, \xi) \in S$. Then (x, ξ) is prime relative to (m, α) if and only if $0 \leq x<m+I\left(\alpha, \alpha^{-1} * \xi\right)$.

Lemma 3.2. Let $(x, \xi) \in S$ and let (z, γ) be the unique prime in S relative to (m, α) such that $(\overline{x, \xi})=\overline{(z, \gamma})$. Then

$$
(z, \gamma)=\left(x-k m-\sum_{i=1}^{k} I\left(\alpha, \alpha^{-i} * \xi\right), \alpha^{-k} * \xi\right)
$$

where k is the unique non-negative integer satisfying

$$
k m+\sum_{i=1}^{k} I\left(\alpha, \alpha^{-i} * \xi\right) \leq x<(k+1) m+\sum_{i=1}^{k+1} I\left(\alpha, \alpha^{-i} * \xi\right) .
$$

In the following theorem, $\langle\alpha\rangle$ denotes the cyclic subgroup of G generated by α and the product in $G /\langle\alpha\rangle$ is denoted by " $*$ ".

Theorem 3.3. Define a map $h: G_{(m, \alpha)} \rightarrow G /\langle\alpha\rangle$ by $h \overline{(x, \xi)}=\bar{\xi}$ where $\bar{\xi}$ denotes the congruence class $\bmod \langle\alpha\rangle$ containing ξ.
(3.3.1) The map h is a homomorphism from $G_{(m, \alpha)}$ to $G /\langle\alpha\rangle$.
(3.3.2) $\operatorname{Ker}(h)=\left\{\left(\overline{x, \xi)} \in G_{(m, \alpha)}: \xi=\alpha^{n}\right.\right.$ for some $\left.n \in Z\right\}$.
(3.3.3) $\operatorname{Ker}(h)=\langle\overline{(0, \varepsilon)}\rangle$, i.e., the cyclic subgroup of $G_{(m, \alpha)}$ generated by $\overline{(0, \varepsilon)}$.
Consequently, $G_{(m, \alpha)}$ is an abelian extension of $\langle\overline{(0, \varepsilon)}\rangle$ by $G /\langle\alpha\rangle$.
Proof. It is easy to verify (3.3.1) and (3.3.2). For (3.3.3), we first prove that $\langle\overline{(0, \varepsilon)}\rangle \subseteq \operatorname{Ker}(h)$. We only need to show that $\overline{(0, \varepsilon)^{n}}$ $\in \operatorname{Ker}(h)$ for $n<0$. Let $n=-k$, so $k>0$. If $m \in Z_{+}$, we have $\overline{(0, \varepsilon)^{-k}}$ $\left.=\overline{((0, \varepsilon)})^{-1}\right)^{k}=(\overline{m-1, \alpha})^{k}=\overline{\left(k(m-1)+\sum_{i=1}^{k-1} I\left(\alpha, \alpha^{i}\right), \alpha^{k}\right)} \in \operatorname{Ker}(h)$. If $m=0$, let $j-1$ be the first positive integer such that $I\left(\alpha, \alpha^{j-1}\right) \neq 0$. We then have

$$
\begin{aligned}
\overline{(0, \varepsilon)^{-k}} & =\overline{\left((0, \varepsilon)^{-1}\right)^{k}}=\overline{\left(I\left(\alpha, \alpha^{j-1}\right)-1, \alpha^{j}\right)^{k}} \\
& =\overline{\left(k\left(I\left(\alpha, \alpha^{j-1}\right)-1\right)+\sum_{i=1}^{k-1} I\left(\alpha^{j}, \alpha^{j i}\right), \alpha^{j k}\right)} \in \operatorname{Ker}(h) .
\end{aligned}
$$

Next, we prove that $\operatorname{Ker}(h) \subseteq\langle\overline{(0, \varepsilon)}\rangle$. Let $\overline{\left(x, \alpha^{n}\right)} \in \operatorname{Ker}(h)$. Suppose $n>0$. Since $\left(\overline{\left.x, \alpha^{n}\right)} *\left(\overline{0, \alpha^{-n}}\right)=\overline{\left(x+I\left(\alpha^{n}, \alpha^{-n}\right), \varepsilon\right)}=\overline{(0, \varepsilon)^{\left(x+I\left(\alpha^{n}, \alpha-n\right)+1\right)} \text {, we }}\right.$ have $\overline{\left(x, \alpha^{n}\right)}=\left(\overline{\left.0, \varepsilon)^{\left(x+I\left(\alpha^{n}, \alpha^{-n}\right)+1\right)} * \overline{\left(0, \alpha^{-n}\right)^{-1}} \text {. It can be shown that } \overline{\left(0, \alpha^{-n}\right.}\right)}\right.$
 lows that $\overline{\left(x, \alpha^{n}\right)}=\overline{(0, \varepsilon)^{\left(x+I\left(\alpha^{n}, \alpha-n\right)-n m-\sum_{i=1}^{n} I(\alpha, \alpha-t)\right)} \text {. Now suppose } n=-k}$
 then

$$
\begin{aligned}
\overline{\left(x, \alpha^{-k}\right)} & =\overline{(x-1, \varepsilon)\left(0, \alpha^{-k}\right)}=\overline{(x-1, \varepsilon) *\left(0, \alpha^{-k}\right)} \\
& =\overline{(0, \varepsilon)^{x} *\left(0, \alpha^{-k}\right)}=\overline{(0, \varepsilon)^{\left(x+k m+\left[\sum_{i=1}^{k} I(\alpha, \alpha-i)\right]+1\right)} .}
\end{aligned}
$$

We have thus shown that $\operatorname{Ker}(h)=\langle\overline{(0, \varepsilon)}\rangle$.
4. A factor system for $\boldsymbol{G}_{(m, \alpha)}$. To completely describe the structure of $G_{(m, \alpha)}$ we have to find a factor system $F: G /\langle\alpha\rangle \times G /\langle\alpha\rangle$ $\rightarrow \operatorname{Ker}(h)$. In each $\langle\alpha\rangle$-class of G, there is an element γ such that $(0, \gamma) \in S$ is prime relative to (m, α). Fix one such element γ for each $\langle\alpha\rangle$-class. Define a lifting $L: G /\langle\alpha\rangle \rightarrow G_{(m, \alpha)}$ by $L(\bar{\gamma})=\overline{(0, \gamma)}$. Then F is defined by the equation $L(\bar{\xi}) * L(\bar{\eta})=F(\bar{\xi}, \bar{\eta}) * L(\bar{\gamma})$ where $\bar{\gamma}=\bar{\xi} * \bar{\eta}$. Note that $\gamma=\alpha^{l} * \xi * \eta$ for some $l \in Z$, hence $\overline{(0, \xi) *(0, \eta)}=F(\bar{\xi}, \bar{\eta}) *\left(\overline{\left.0, \alpha^{l} * \xi * \eta\right)}\right.$. We want to find the unique prime (w, τ) in S relative to (m, α) such that $F(\bar{\xi}, \bar{\eta})=\overline{(w, \tau})$. Let (v, ρ) be the unique prime in S relative to (m, α) such that $\overline{(v, \rho)}=\overline{(0, \xi)} * \overline{(0, \eta)}$. By Lemma 3.2, (v, ρ) equals

$$
\begin{aligned}
& \left(I(\xi, \eta)-j m-\sum_{i=1}^{j=1} I\left(\alpha, \alpha^{-i} * \xi * \eta\right), \alpha^{-j} * \xi * \eta\right) \\
& \quad=\left(w+I\left(\tau, \alpha^{l} * \xi * \eta\right)-k m-\sum_{i=1}^{k} I\left(\alpha, \alpha^{-i} * \tau * \alpha^{l} * \xi * \eta\right), \alpha^{-k} * \tau * \alpha^{l} * \xi * \eta\right)
\end{aligned}
$$

where $j, k \in Z_{+}^{0}$ are unique (j is known, but k is not). By equating components and solving for w and τ, we obtain

$$
\left\{\begin{align*}
& \tau=\alpha^{k-j-l} \tag{4.1}\\
& w= I(\xi, \eta)+(k-j) m+\left[\sum_{i=0}^{k-1} I\left(\alpha, \alpha^{i} * \xi * \eta\right)\right] \\
& \quad I\left(\alpha^{k-j-l}, \alpha^{l} * \xi * \eta\right)-\sum_{i=k-j}^{k-1} I\left(\alpha, \alpha^{i} * \xi * \eta\right)
\end{align*}\right.
$$

Consequently, our problem is reduced to determining k. Recall that (w, τ) is prime. By using Lemma 3.1 and doing some delicate algebraic manipulations, we obtain the following result.

Theorem 4.2. A factor system F for the extension $G_{(m, \alpha)}$ of $\operatorname{Ker}(h)$ by $G \mid\langle\alpha\rangle$ is defined by $F(\bar{\xi}, \bar{\eta})=(\bar{w}, \tau)$ where τ and w are given by (4.1). Furthermore, the non-negative integer k is uniquely determined by $N_{k+1} \leq I(\xi, \eta)<N_{k}$ where
$N_{k}=I\left(\alpha^{-l}, \alpha^{l} * \xi * \eta\right)+(j-k+1) m+\left[\sum_{i=1}^{j+1} I\left(\alpha, \alpha^{-l-i}\right)-\sum_{i=j-k+2}^{j+1} I\left(\alpha, \alpha^{-l-i}\right)\right]$.

References

[1] Sasaki, M.: On \mathfrak{R}-semigroups. Memoirs of Seminar on Algebraic Theory of Semigroups at the Research Institute of Mathematical Sciences, Kyoto University, pp. 65-86 (1967).
[2] Tamura, T.: Basic study of \mathfrak{R}-semigroups and their homomorphisms. Semigroup Forum, 8, 21-50 (1974).

