59. Isomorphism Criterion and Structure Group Description for *R*-Semigroups

By James M. LORD University of California, Davis (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

0. Introduction. A commutative cancellative archimedean semigroup without idempotents is called an \Re -semigroup. In this paper, necessary and sufficient conditions are given for two \Re -semigroups to be isomorphic and the structure groups of an \Re -semigroup are completely described. M. Sasaki did some related work in [1], but the results given here are simpler. In [2], T. Tamura obtained an isomorphism criterion from a different point of view.

1. Preliminaries. Let S be any \mathfrak{N} -semigroup and let $a \in S$. Define a group-congruence ρ_a on S by $x\rho_a y$ if and only if $a^m x = a^n y$ for some $m, n \in \mathbb{Z}_+$ (the positive integers). The group $G_a = S/\rho_a$ is called the structure group of S with respect to a. Structure group products will be denoted by "*" in this paper. Let $p \in S$. If $p \notin aS$, p is called a prime (relative to a). Every $x \in S$ has a unique representation $x = a^k p$ where $k \in \mathbb{Z}_+^0$ ($a^0 p$ means p) and $p \in S$ is a prime. By the fundamental structure theorems for \mathfrak{N} -semigroups [2], we may assume $S = (G; I) = (G; \varphi)$, that is, $S = \{(x, \xi) : x \in \mathbb{Z}_+^0, \xi \in G\}$ where $(x, \xi)(y, \eta)$ $= (x + y + I(\xi, \eta), \xi * \eta)$ and $I(\xi, \eta) = \varphi(\xi) + \varphi(\eta) - \varphi(\xi * \eta)$ for all $\xi, \eta \in G$. Let $(m, \alpha) \in S$. The structure group $G_{(m,\alpha)} = S/\rho$ is of major importance in this paper. Observe that $G_{(m,\alpha)} = \{(\overline{x}, \overline{\xi}) : (x, \xi)$ is prime relative to (m, α) . For a more thorough review of \mathfrak{N} -semigroups, see [2].

2. Isomorphism criterion. Theorem 2.1. Let $S = (G; I) = (G; \varphi)$ and $\hat{S} = (\hat{G}; \hat{I}) = (\hat{G}; \hat{\varphi})$. Then S is isomorphic to \hat{S} if and only if there exists $(m, \alpha) \in S$ such that

(2.1.1) $G_{(m,\alpha)}$ is isomorphic to \hat{G} and

(2.1.2) $\hat{\varphi}(\hat{\xi}) + \hat{\varphi}(\hat{\eta}) - \hat{\varphi}(\hat{\xi} * \hat{\eta}) = (x + \varphi(\xi) + y + \varphi(\eta) - (z + \varphi(\gamma)))/(m + \varphi(\alpha))$ holds for all $\hat{\xi}, \hat{\eta} \in \hat{G}$ where $(x, \xi), (y, \eta),$ and (z, γ) are the unique primes in S relative to (m, α) such that the isomorphism in (2.1.1) carries $\overline{(x, \xi)}, \overline{(y, \eta)},$ and $\overline{(z, \gamma)}$ to $\hat{\xi}, \hat{\eta},$ and $\hat{\xi} * \hat{\eta}$ respectively.

Proof. Necessity. Assume $f: S \to \hat{S}$ is the isomorphism and let $f(m, \alpha) = (0, \hat{\epsilon})$. Define $\iota: \hat{G}_{(0,i)} \to \hat{G}$ by $\overline{\iota(0, \hat{\xi})} = \hat{\xi}$ and $\hat{f}: G_{(m,\alpha)} \to \hat{G}_{(0,i)}$ by $\hat{f}(\overline{x, \xi}) = f(\overline{x, \xi})$. Then $\iota \circ \hat{f}$ is an isomorphism of $G_{(m,\alpha)}$ onto \hat{G} . To prove (2.1.2), let $\hat{\xi}, \hat{\eta} \in \hat{G}$ and let $(x, \xi), (y, \eta)$, and (z, γ) be the primes relative to (m, α) such that $(\iota \circ \hat{f})(\overline{x, \xi}) = \hat{\xi}, (\iota \circ \hat{f})(\overline{y, \eta}) = \hat{\eta}$, and $(\iota \circ \hat{f})(\overline{z, \gamma}) = \hat{\xi} * \hat{\eta}$. Then $f(x, \xi) = (0, \hat{\xi}), f(y, \eta) = (0, \hat{\eta})$, and $f(z, \gamma) = (0, \hat{\xi} * \hat{\eta})$. Define

a map $\hat{\varphi}': \hat{G} \to R_+$ (the positive reals) by $\hat{\varphi}'(\hat{\xi}) = (x + \varphi(\xi))/(m + \varphi(\alpha))$ where $(x,\xi) \in S$ such that $f(x,\xi) = (0,\hat{\xi})$. It can be shown that $\hat{I}(\hat{\xi},\hat{\eta}) = \hat{\varphi}'(\hat{\xi}) + \hat{\varphi}'(\hat{\eta}) - \hat{\varphi}'(\hat{\xi}*\hat{\eta})$. From this fact, (2.1.2) follows easily.

Sufficiency. Let $g: G_{(m,\alpha)} \to \hat{G}$ be the isomorphism given in (2.1.1). To simplify the notation, when $(z, \gamma) \in S$ is a prime relative to (m, α) , let $\hat{\gamma}_z$ denote the element $g(\overline{z}, \gamma)$. Recall that if $(x, \xi) \in S$, there is a unique representation $(x, \xi) = (m, \alpha)^k (z, \gamma)$ where $k \in \mathbb{Z}_+^0$ and (z, γ) is a prime. Using this fact, define a map $f: S \to \hat{S}$ by $f(x, \xi) = (k, \hat{\gamma}_z)$. It is routine to show that f is well defined, one-to-one, and onto. Let $(x, \xi), (y, \eta) \in S$ and suppose $(x, \xi) = (m, \alpha)^j (w, \tau), (y, \eta) = (m, \alpha)^n (v, \beta),$ and $(x+y+I(\xi, \eta), \xi*\eta) = (m, \alpha)^k (z, \gamma)$ where $j, n, k \in \mathbb{Z}_+^0$ and $(w, \tau), (v, \beta),$ (z, γ) are primes. By using the fact that $(w+\varphi(\tau)+(v+\varphi(s)))-(z+\varphi(\gamma)))$ $= (-j-n+k)(m+\varphi(\alpha)),$ it can be shown that $f(x, \xi) \cdot f(y, \eta)$ $= f((x, \xi)(y, \eta)).$

3. The structure groups. Let $S = (G; I) = (G; \varphi)$ where ε is the identity of G.

Lemma 3.1. Let $(x, \xi) \in S$. Then (x, ξ) is prime relative to (m, α) if and only if $0 \le x < m + I(\alpha, \alpha^{-1} * \xi)$.

Lemma 3.2. Let $(x, \xi) \in S$ and let (z, γ) be the unique prime in S relative to (m, α) such that $(\overline{x, \xi}) = \overline{(z, \gamma)}$. Then

$$(z,\gamma) = \left(x - km - \sum_{i=1}^{k} I(\alpha, \alpha^{-i} * \xi), \alpha^{-k} * \xi\right)$$

where k is the unique non-negative integer satisfying

$$km + \sum_{i=1}^{k} I(\alpha, \alpha^{-i} * \xi) \le x < (k+1)m + \sum_{i=1}^{k+1} I(\alpha, \alpha^{-i} * \xi).$$

In the following theorem, $\langle \alpha \rangle$ denotes the cyclic subgroup of G generated by α and the product in $G/\langle \alpha \rangle$ is denoted by "*".

Theorem 3.3. Define a map $h: G_{(m,\alpha)} \to G/\langle \alpha \rangle$ by $h(\overline{x,\xi}) = \overline{\xi}$ where $\overline{\xi}$ denotes the congruence class mod $\langle \alpha \rangle$ containing ξ .

(3.3.1) The map h is a homomorphism from $G_{(m,\alpha)}$ to $G/\langle \alpha \rangle$.

(3.3.2) Ker $(h) = \{(\overline{x, \xi}) \in G_{(m,\alpha)} : \xi = \alpha^n \text{ for some } n \in Z\}.$

(3.3.3) Ker $(h) = \langle \overline{(0, \varepsilon)} \rangle$, i.e., the cyclic subgroup of $G_{(m, \alpha)}$ generated by $\overline{(0, \varepsilon)}$.

Consequently, $G_{(m,\alpha)}$ is an abelian extension of $\langle \overline{(0,\varepsilon)} \rangle$ by $G/\langle \alpha \rangle$.

Proof. It is easy to verify (3.3.1) and (3.3.2). For (3.3.3), we first prove that $\langle \overline{(0,\varepsilon)} \rangle \subseteq \operatorname{Ker}(h)$. We only need to show that $\overline{(0,\varepsilon)}^n \in \operatorname{Ker}(h)$ for n < 0. Let n = -k, so k > 0. If $m \in \mathbb{Z}_+$, we have $\overline{(0,\varepsilon)}^{-k} = \overline{((0,\varepsilon)}^{-1})^k = \overline{(m-1,\alpha)}^k = \overline{(k(m-1)+\sum_{i=1}^{k-1} I(\alpha,\alpha^i),\alpha^k)} \in \operatorname{Ker}(h)$. If m = 0, let j-1 be the first positive integer such that $I(\alpha, \alpha^{j-1}) \neq 0$. We then have

$$\overline{(0,\varepsilon)}^{-k} = \overline{((0,\varepsilon)}^{-1)^k} = \overline{(I(\alpha,\alpha^{j-1})-1,\alpha^j)^k} = \overline{(k(I(\alpha,\alpha^{j-1})-1)+\sum_{i=1}^{k-1}I(\alpha^j,\alpha^{ji}),\alpha^{jk})} \in \operatorname{Ker}(h).$$

Next, we prove that Ker $(h) \subseteq \langle (0, \varepsilon) \rangle$. Let $(x, \alpha^n) \in \text{Ker}(h)$. Suppose n > 0. Since $(\overline{x, \alpha^n}) * (\overline{0, \alpha^{-n}}) = (\overline{x + I(\alpha^n, \alpha^{-n})}, \varepsilon) = (\overline{0, \varepsilon})^{(x + I(\alpha^n, \alpha^{-n}) + 1)}$, we have $\overline{(x, \alpha^n)} = (\overline{0, \varepsilon})^{(x + I(\alpha^n, \alpha^{-n}) + 1)} * (\overline{0, \alpha^{-n}})^{-1}$. It can be shown that $\overline{(0, \alpha^{-n})} = (\overline{0, \varepsilon})^{(nm + [\sum_{i=1}^{n} I(\alpha, \alpha^i)] + 1)}$, hence $(\overline{0, \alpha^{-n}})^{-1} = (\overline{0, \varepsilon})^{(-nm - [\sum_{i=1}^{n} I(\alpha, \alpha^{-i})] - 1)}$. It follows that $(\overline{x, \alpha^n}) = (\overline{0, \varepsilon})^{(x + I(\alpha^n, \alpha^{-n}) - nm - \sum_{i=1}^{n} I(\alpha, \alpha^{-i})]}$. Now suppose $n = -k \le 0$, so $k \ge 0$. If x = 0, then $(\overline{0, \alpha^{-k}}) = (\overline{0, \varepsilon})^{(km + [\sum_{i=1}^{k} I(\alpha, \alpha^{-i})] + 1)}$. If x > 0, then

$$\overline{(x,\alpha^{-k})} = \overline{(x-1,\varepsilon)(0,\alpha^{-k})} = \overline{(x-1,\varepsilon)*(0,\alpha^{-k})} = \overline{(0,\varepsilon)^{(x+km+\lceil \sum_{i=1}^{k} I(\alpha,\alpha^{-i})\rceil+1)}}.$$

We have thus shown that Ker $(h) = \langle \overline{(0, \epsilon)} \rangle$.

4. A factor system for $G_{(m,\alpha)}$. To completely describe the structure of $G_{(m,\alpha)}$ we have to find a factor system $F: G/\langle \alpha \rangle \times G/\langle \alpha \rangle \to \operatorname{Ker}(h)$. In each $\langle \alpha \rangle$ -class of G, there is an element γ such that $(0,\gamma) \in S$ is prime relative to (m,α) . Fix one such element γ for each $\langle \alpha \rangle$ -class. Define a lifting $L: G/\langle \alpha \rangle \to G_{(m,\alpha)}$ by $L(\overline{\gamma}) = (\overline{0},\gamma)$. Then F is defined by the equation $L(\overline{\xi})*L(\overline{\eta}) = F(\overline{\xi},\overline{\eta})*L(\overline{\gamma})$ where $\overline{\gamma} = \overline{\xi}*\overline{\eta}$. Note that $\gamma = \alpha^i * \xi * \eta$ for some $l \in Z$, hence $(\overline{0},\xi)*(\overline{0},\eta) = F(\overline{\xi},\overline{\eta})*(\overline{0},\alpha^i * \xi * \eta)$. We want to find the unique prime (w,τ) in S relative to (m,α) such that $F(\overline{\xi},\overline{\eta}) = (\overline{0},\overline{\xi})*(\overline{0},\eta)$. By Lemma 3.2, (v,ρ) equals

 $(I(\xi,\eta)-jm-\sum_{i=1}^{j}I(\alpha,\alpha^{-i}*\xi*\eta),\alpha^{-j}*\xi*\eta)$

 $= (w + I(\tau, \alpha^{i} * \xi * \eta) - km - \sum_{i=1}^{k} I(\alpha, \alpha^{-i} * \tau * \alpha^{i} * \xi * \eta), \alpha^{-k} * \tau * \alpha^{i} * \xi * \eta)$ where $j, k \in \mathbb{Z}_{+}^{0}$ are unique (j is known, but k is not). By equating components and solving for w and τ , we obtain

(4.1)
$$\begin{cases} \tau = \alpha^{k-j-i}, \\ w = I(\xi, \eta) + (k-j)m + [\sum_{i=0}^{k-1} I(\alpha, \alpha^i * \xi * \eta)] \\ -I(\alpha^{k-j-i}, \alpha^i * \xi * \eta) - \sum_{i=k-j}^{k-1} I(\alpha, \alpha^i * \xi * \eta). \end{cases}$$

Consequently, our problem is reduced to determining k. Recall that (w, τ) is prime. By using Lemma 3.1 and doing some delicate algebraic manipulations, we obtain the following result.

Theorem 4.2. A factor system F for the extension $G_{(m,\alpha)}$ of Ker (h) by $G/\langle \alpha \rangle$ is defined by $F(\bar{\xi}, \bar{\eta}) = (\overline{w, \tau})$ where τ and w are given by (4.1). Furthermore, the non-negative integer k is uniquely determined by $N_{k+1} \leq I(\xi, \eta) < N_k$ where

$$N_{k} = I(\alpha^{-l}, \alpha^{l} \ast \xi \ast \eta) + (j - k + 1)m + [\sum_{i=1}^{j+1} I(\alpha, \alpha^{-l-i}) - \sum_{i=j-k+2}^{j+1} I(\alpha, \alpha^{-l-i})].$$

References

- [1] Sasaki, M.: On N-semigroups. Memoirs of Seminar on Algebraic Theory of Semigroups at the Research Institute of Mathematical Sciences, Kyoto University, pp. 65-86 (1967).
- [2] Tamura, T.: Basic study of *n*-semigroups and their homomorphisms. Semigroup Forum, 8, 21-50 (1974).