58. Identities E-2 and Exponentiality

By J. Clarke, R. Pfiefer, and T. Tamura
Department of Mathematics, University of California, Davis
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

1. Introduction. Let S be a semigroup and Z_{+}the set of positive integers, and $Z_{+}^{0}=Z_{+} \cup\{0\}$. Define $E(S)$ by

$$
E(S)=\left\{n \in Z_{+}:(a b)^{n}=a^{n} b^{n} \quad \text { for all } a, b \in S\right\}
$$

$E(S)$ is a multiplicative semigroup containing 1. A semigroup is called an E-n semigroup [3] if $n \in E(S)$. If $E(S)=Z_{+}$, then S is called exponential. In some semigroups, $E-2$ implies exponentiality, for example, this holds for groups, cancellative semigroups or inverse semigroups [4]. More generally, regular $E-2$ semigroups are exponential [3]. Recently A. Cherubini Spoletini and A. Varisco [1] obtained that a power cancellative $E-2$ semigroup is exponential and also they have

Proposition 1 ([1]). Let S be a semigroup. If $n \in E(S)$ then $n+\lambda n(n-1) \in E(S)$ for all $\lambda \in Z_{+}^{0}$. Hence if $2 \in E(S)$ then $2 n \in E(S)$ for all $n \in Z_{+}$.

As is well known [2], if S is a group and $E(S)$ contains three consecutive integers then $E(S)=Z_{+}$. In parallel to this,

Proposition 2 ([5]). Let S be a semigroup. If 2, $n, n+1$ and $n+2$ are in $E(S)$ then $\left\{m \in Z_{+}: m \geq n\right\} \subset E(S)$. Therefore, if S is $E-2$ and $E-3$, then S is exponential.

In this paper, Theorem 3 will improve Proposition 2 and the second part of Proposition 1 so that we shall be able to completely describe $E(S)$ when $2 \in E(S)$.
2. Results. Theorem 3. Let S be a semigroup. If $2 \in E(S)$, then $m \in E(S)$ for all $m \geq 4$.

Proof. Since $2 \in E(S)$ implies $4 \in E(S)$, it is sufficient to verify the following : If $n>2$ and $2, n \in E(S)$, then $n+1 \in E(S)$.

In case n is odd, $n-1$ is even, so let $n-1=2 k$. Then

$$
\begin{aligned}
x^{n+1} y^{n+1} & =x\left(x^{n} y^{n}\right) y=x(x y)^{n} y=x^{2}(y x)^{n-1} y^{2} \\
& =x^{2}\left((y x)^{k}\right)^{2} y^{2}=\left(x(y x)^{k}\right)^{2} y^{2}=\left((x y)^{k} x\right)^{2} y^{2} \\
& =(x y)^{2 k} x^{2} y^{2}=(x y)^{n-1}(x y)^{2}=(x y)^{n+1} .
\end{aligned}
$$

In case n is even, let $n-2=2 k$. Then

$$
\begin{aligned}
x^{n+1} y^{n+1} & =x\left(x^{n} y^{n}\right) y=x(x y)^{n} y=x^{2}(y x)^{n-1} y^{2} \\
& =x^{2}(y x)^{n-3}(y x)^{2} y^{2}=x^{2}(y x)^{n-3}(y x y)^{2} \\
& =x^{2}(y x)^{n-2} y^{2} x y=x^{2}\left((y x)^{k}\right)^{2} y^{2} x y \\
& =\left(x(y x)^{k}\right)^{2} y^{2} x y=\left((x y)^{k} x\right)^{2} y^{2} x y=(x y)^{2 k} x^{2} y^{2} x y \\
& =(x y)^{n-2}(x y)^{2}(x y)=(x y)^{n+1} .
\end{aligned}
$$

See in [5] an example of an $E-2$ semigroup which is not $E-3$.
Corollary 4. Let S be an E-2 semigroup. S is exponential if and only if S satisfies the identity $\left(x^{2} y\right)\left(x y^{2}\right)=\left(x y^{2}\right)\left(x^{2} y\right)$.

A semigroup is called n-cancellative if, for $a, b \in S, a^{n}=b^{n}$ implies $a=b$. If S is n-cancellative for all $n \in Z_{+}$, then S is called powercancellative. A semigroup is called n-divisible if for each $a \in S$ there is $b \in S$ such that $a=b^{n}$.

For any semigroup S, define semigroups $C(S)$ and $D(S)$ as follows:

$$
\begin{aligned}
& C(S)=\left\{n \in Z_{+}: S \text { is } n \text {-cancellative }\right\} \\
& D(S)=\left\{n \in Z_{+}: S \text { is } n \text {-divisible }\right\}
\end{aligned}
$$

The following is obtained as a consequence of Remark 1.6 of [1], but the proof here is shorter.

Corollary 5 ([1]). Assume a semigroup S is either n-cancellative or n-divisible for $n>1$. Then S is exponential if and only if S is $E-2$.

Proof. We need only prove sufficiency. Assume S is $E-2$. Since $n \in C(S)$ implies $n^{2} \in C(S)$ [$n \in D(S)$ implies $\left.n^{2} \in D(S)\right]$, we can assume $n \neq 3$ without loss of generality.

If S is n-cancellative, by Theorem 3, we see $n, 3 n \in E(S)$ and then $\left(a^{3} b^{3}\right)^{n}=a^{3 n} b^{3 n}=(a b)^{3 n}=\left((a b)^{3}\right)^{n}$.
By n-cancellation, we have $a^{3} b^{3}=(a b)^{3}$, thus S is $E-3$. Therefore S is exponential.

If S is n-divisible, $S=\left\{x^{n}: x \in S\right\}$. Then, since $n, 3 n \in E(S)$ by Theorem 3,

$$
\left(a^{n} b^{n}\right)^{3}=\left((a b)^{n}\right)^{3}=(a b)^{3 n}=a^{3 n} b^{3 n}=\left(a^{n}\right)^{3}\left(b^{n}\right)^{3} .
$$

Thus S is $E-3$, hence exponential.
For further study, the following question is raised:
Problem. If S is a semigroup and $3 \in E(S)$, what can we say about $E(S)$?

Acknowledgement. We express thanks to Profs. A. Cherubini Spoletini and A. Varisco for giving us useful imformation.

References

[1] A. Cherubini Spoletini and A. Varisco: Some properties of $E-m$ semigroups. Semigroup Forum, 17, 153-161 (1979).
[2] I. N. Herstein: Topics in Algebra. Ginn and Company, Waltham, Massachusetts (1964).
[3] T. Nordahl: Semigroups satisfying ($x y)^{m}=x^{m} y^{m}$. Semigroup Forum, 8, 332346 (1974).
[4] T. Tamura: On the exponents of inverse semigroups. Proc. of Symp. on Inverse Semigroups, Northern Illinois University, pp. 172-185 (1973).
[5] -: Complementary semigroups and exponent semigroups of order bounded groups. Math. Nachr., 59, 17-34 (1974).

