69. On Sufficient Conditions for the Boundedness of Pseudo-Differential Operators

By Tosinobu MURAMATU^{*)} and Michihiro NAGASE^{**)} (Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1979)

We report here that pseudo-differential operators are bounded in L_p , 1 , if some considerably weak conditions on the smoothness of their symbols are satisfied.

1. Notations. If $x = (x_1, \dots, x_n)$ is a point in the *n*-dimensional Euclidean space \mathbb{R}^n , and $\alpha = (\alpha_1, \dots, \alpha_n)$ a multi-index, then we write $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \ \partial_x^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}, \ \partial_{x_j} = \partial/\partial x_{x_j}, \ |x| = (x_1^2 + \dots + x_n^2)^{1/2}, \ \langle x \rangle = (1 + |x|^2)^{1/2}, \ |\alpha| = \alpha_1 + \dots + \alpha_n.$ We denote by \varDelta the difference operator, and adopt the following conventions:

$$\begin{aligned} & \Delta_y a(x,\xi,x') = a(x+y,\xi,x') - a(x,\xi,x'), \\ & \Delta_y a(x,\xi,x') = a(x,\xi+\eta,x') - a(x,\xi,x'), \\ & \Delta_{y'} a(x,\xi,x') = a(x,\xi,x'+y') - a(x,\xi,x'). \end{aligned}$$

Let $a(x, \xi, x')$ be a symbol, that is, a continuous function of (x, ξ, x') in \mathbb{R}^{3^n} . If *m* is a non-negative integer, and $0 < \theta < 1$, we define

$$\begin{aligned} \|a\|_{m} &= \sup_{\substack{x,\xi,x', |\alpha| \le m}} |\partial_{\xi}^{\alpha} a(x,\xi,x')| \langle \xi \rangle^{|\alpha|}, \\ |a|_{m+\theta} &= \sup_{\substack{x,\xi,x', |\eta| \le \langle \xi \rangle/2, |\alpha| = m}} |\mathcal{L}_{\eta} \partial_{\xi}^{\alpha} a(x,\xi,x')| \langle \xi \rangle^{m+\theta} |\eta|^{-\theta}, \\ \|a\|_{m+\theta} &= \|a\|_{m} + |a|_{m+\theta}. \end{aligned}$$

If t and σ are positive numbers, we define

$$\omega_{\sigma}(a ; t) = \sup_{\substack{|y| \leq t \\ |y| \leq t}} \| \mathcal{\Delta}_{y} a(x, \xi, x') \|_{\sigma},$$

$$\omega_{\sigma}'(a ; t) = \sup_{\substack{|y'| \leq t \\ |y'| \leq t}} \| \mathcal{\Delta}_{y'} a(x, \xi, x') \|_{\sigma}.$$

It is easy to find that $||a||_{\sigma} \leq c ||a||_{\tau}$, $\omega_{\sigma}(a; t) \leq c\omega_{\tau}(a; t)$, $\omega'_{\sigma}(a; t) \leq c\omega'_{\tau}(a; t)$, $\omega'_{\sigma}(a; t)$, $\omega'_{\sigma}(a; t)$

2. Main results. Our main results are stated as follows:

Theorem 1. If a symbol $a(x, \xi)$ satisfies the conditions

(a) $||a||_{\sigma}$ is finite, and

(b) $\omega_{\sigma}(a; t) \in L_2^* (= L_2([0, 1], t^{-1}dt))$

for some $\sigma > n/2$, then the pseudo-differential operator a(X, D) is bounded in $L_2(\mathbb{R}^n)$.

If a symbol $a(\xi, x')$ satisfies the conditions (a) and

(b') $\omega'_{\sigma}(a;t) \in L_2^*$

for some $\sigma > n/2$, then the pseudo-differential operator $a(D_x, X')$ is

^{*)} Institute of Mathematics, University of Tukuba, Ibaraki 300-31.

^{**&#}x27; Department of Mathematics, College of General Education, Osaka University, Osaka 560.

bounded in $L_2(\mathbf{R}^n)$.

Theorem 2. If a symbol $a(x,\xi)$ (or $a(\xi, x')$) satisfies the conditions (a) and (b) (or (b')) for some $\sigma > n+1$, then the operator a(X,D)(or $a(D_x, X')$) is bounded in $L_p(\mathbb{R}^n)$ (1 .

Theorem 3. If a symbol $a(x, \xi, x')$ satisfies the conditions (a) and (c) $\{\omega_{\sigma}(a; t)^2 + \omega'_{\sigma}(a; t) \in L_1^* (=L_1([0, 1], t^{-1}dt), t^{-1}dt), t^{-1}dt\}$

 $\int or \, \omega_{\sigma}(a;t) + \omega_{\sigma}'(a;t)^2 \in L_1^*$

for some $\sigma > n$, then the pseudo-differential operator $a(X, D_x, X')$ is bounded in $L_2(\mathbb{R}^n)$.

Theorem 4. If $a(x, \xi, x')$ satisfies the conditions (a) and (c) for some $\sigma > n+1$, then $a(X, D_x, X')$ is bounded in $L_p(\mathbb{R}^n)$ (1 .

3. Comparison with the previous investigations. Assuming (a) with $\sigma = n+2$ and the condition

 $\omega_{n+2}(a;t) + \omega_{n+2}'(a;t) \leq ct^{\delta} \qquad (0 < \delta \leq 1),$

(that is, Hölder continuous case) Muramatu (Colloquium at Tokyo Univ. of Education. See also [7].) and Nagase ([8]) proved L_p -boundedness of the operator $a(X, D_x, X')$. Mossaheb-Okada ([5]) proved L_p -boundedness of the operator a(X, D) under the conditions (a) with $\sigma = n+2$ and

$$\omega_{n+2}(a;t) \leq C (\log 2/t)^{-1},$$

while Coifman-Meyer ([4]) gave the same boundedness theorem under the conditions (a) and

$$\omega_{\sigma}(a;t) \leq c (\log 2/t)^{-\delta}, \qquad \delta > 1/2,$$

with $\sigma = n + [n/2] + 2$.

Theorem 1 is closely related with Cordes-Kato's theorem ([1], [2]), which states that the operator a(X, D) is bounded in L_2 if its symbol $a(x, \xi)$ satisfies

 $|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}a(x,\xi)| \leq C_{\alpha\beta} \langle \xi \rangle^{(|\beta|-|\alpha|)\rho}$

for all $|\alpha| \leq [n/2]+1$, $|\beta| \leq [n/2]+2$, where $0 \leq \rho < 1$.

4. An interpolation theorem and some lemmas. We shall state here an auxiliary results needed in our argument.

Theorem 5. Let X and Y be Banach spaces, and let H(x, x') be an $\mathcal{L}(X, Y)$ -valued strongly measurable function of (x, x') in \mathbb{R}^n , where $\mathcal{L}(X, Y)$ denotes the space of all bounded linear operators from X to Y. Assume that the operator T defined by

(4.1)
$$Tu(x) = \int H(x, x')u(x')dx' \quad \text{for } u \in \mathcal{S}(\mathbf{R}^n; X)$$

is bounded operator from $L_2(\mathbf{R}^n; X)$ to $L_2(\mathbf{R}^n; Y)$, and

(4.2) ess.
$$\sup_{b>0,x'\in \mathbb{R}^n} b \int \chi_b(x-x') \sum_{1\leq j\leq n} \|\partial_{xj}H(x,x')\|_{\mathcal{L}(X,Y)} dx < \infty,$$

where χ_b is the characteristic function of the set $\{x; |x_j| > b \text{ for some } 1 \leq j \leq n\}$. Then T is a bounded operator from $L_p(\mathbb{R}^n; X)$ to $L_p(\mathbb{R}^n; Y)$ for 1 .

294

This theorem can be proved in the same way as in [6, pp. 96–97]. Lemma 1. Let m be an integer, $0 < \theta < 1$, $1 \le p \le 2$, 1/p + 1/p' = 1, and let \hat{f} be the Fourier transform of f.

(i) If $\hat{f}(\xi) \in W_p^m(R_{\xi}^n)$, then $f(x)\langle x \rangle^m \in L_{p'}(R_x^n)$.

(ii) If $\hat{f}(\xi) \in B_{p,p}^{m+\theta}(\mathbf{R}_{\xi}^{n})$, then $f(x)\langle x \rangle^{m+\theta} \in L_{p'}(\mathbf{R}_{x}^{n})$, where $B_{p,p}^{\sigma}(\mathbf{R}^{n})$ denotes the Besov spaces.

Making use of this lemma and Hölder's inequality, we can prove the following

Lemma 2. (i) If a symbol $a(x,\xi)$ vanishes at $|\xi| \ge b > 0$, and satisfies the condition

(4.3)
$$\sup \|a(x,\xi)\|_{B^{\sigma}_{p,p}(\boldsymbol{R}^{n}_{\xi})} < \infty$$

for some $\sigma > \max(n/2, n/p)$, then a(X, D) is bounded in L_p .

(ii) If a symbol $a(\xi, x')$ vanishes at $|\xi| \ge b > 0$, and satisfies the conditions

(4.4)
$$\sup \|a(\xi, x')\|_{B^{q'}_{p'}, p'(R^{q}_{\xi})} < \infty \qquad (1/p + 1/p' = 1)$$

for some $\sigma > \max(n/2, n/p')$, then $a(D_x, X')$ is bounded in L_p .

5. Sketch of the proofs. Consider first a symbol $a(x, \xi)$ satisfying (a) and (b). Let $\sigma = m + \theta$, $0 < \theta < 1$. Then, with the aid of the approximation theorem of symbols (see [3]), we can write as

 $a(x,\xi) = a_0(x,\xi) + a_1(x,\xi) + a_2(x,\xi),$

where a_0 , a_1 , and a_2 are symbols having the following properties: $a_0(x,\xi)$ vanishes at $|\xi| \ge 3$, while $a_1(x,\xi)$ and $a_2(x,\xi)$ vanishes at $|\xi| \le 2$. a_1 satisfies the conditions

(5.1) $|\partial_x^{\beta}\partial_\xi^{\alpha}a_1(x,\xi)| \leq C_{\alpha\beta}\langle\xi\rangle^{\delta|\beta|-|\alpha|}$ for any β and $|\alpha| \leq m$, and (5.2) $|\Delta_y\partial_x^{\beta}\partial_\xi^{\alpha}a_1(x,\xi)| \leq C_{\alpha\beta}\langle\xi\rangle^{\delta|\beta|-|\alpha|-\theta} |\eta|^{\theta}$ for any β , $|\alpha| = m$, and $|\eta| \leq \langle\xi\rangle/2$. a_2 satisfies the conditions (5.3) $|\partial_\xi^{\alpha}a_2(x,\xi)| \leq C_{\alpha\beta}\langle\xi\rangle^{-|\alpha|} h(\langle\xi\rangle^{-\delta})$ for $|\alpha| \leq m$, and (5.4) $|\Delta_y\partial_\xi^{\alpha}a_2(x,\xi)| \leq C_{\alpha\beta}\langle\xi\rangle^{-|\alpha|-\theta} |\eta|^{\theta} h(\langle\xi\rangle^{-\delta})$ for $|\alpha| = m$ and $|\eta| \leq \langle\xi\rangle/2$. Here $C_{\alpha\beta}$ is a constant independent of x and

for $|\alpha| = m$ and $|\eta| \leq \langle \xi \rangle / 2$. Here $C_{\alpha\beta}$ is a constant independent of x and ξ , δ is a constant with $0 < \delta < 1$, and h(t) is a non-decreasing function of t with $h \in L_2^*$.

 L_2 -boundedness of $a_1(X, D)$ has been known (cf. see [2]. This can be proved also by using Calderón-Vaillancourt's lemma). Combining this with Theorem 5, we get L_p -boundedness of $a_1(X, D)$. Boundedness of $a_0(X, D)$ follows from Lemma 2. To prove boundedness of $a_2(X, D)$ we need the integral representation

(5.5)
$$a_2(X,D)u = (2\pi)^{-n/2} \int_0^1 A(t)u dt/t,$$

(5.6)
$$A(t)u(x) = \iint K(t, x, z)t^{-n}\varphi\left(\frac{x-x'}{t}-z\right)u(x')dzdx',$$

(5.7)
$$K(t, x, z) = (2\pi)^{-n/2} \int e^{iz\xi} a_2(x, \xi/t) f(|\xi|) d\xi$$

where f is a C^{∞} -function of a real variable whose support is contained in the interval [1/2, 1], and φ is a rapidly decreasing C^{∞} -function.

The operator $a(D_x, X')$ can be discussed in the same way.

Finally consider a symbol $a(x, \xi, x')$ satisfying (a) and (c). By the approximation theorem and the expansion theorem we obtain

 $a(X, D_X, X') = a_0(X, D_X, X') + a_1(X, D) + a_2(X, D) + a_3(X, D_X, X')$ (we consider here the case where $\omega_{\sigma}(a; t)^2 + \omega'_{\sigma}(a; t) \in L_1^*$), where $a_0(x, \xi, x')$ satisfies (a) and vanishes at $|\xi| \ge 3$, $a_1(x, \xi)$, $a_2(x, \xi)$ and $a_3(x, \xi, x')$ vanishes at $|\xi| \le 2$, a_1 satisfies (5.1) and (5.2), a_2 satisfies (5.3) and (5.4), and a_3 satisfies (5.3) and (5.4) with $h \in L_1^*$. The rest of the proof is the same as that of the case $a(x, \xi)$.

References

- H. O. Cordes: On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators. J. Funct. Anal., 18, 115-131 (1975).
- [2] T. Kato: Boundedness of some pseudo-differential operators. Osaka J. Math., 13, 1-9 (1976).
- [3] H. Kumano-go and M. Nagase: Pseudo-differential operators with nonregular symbols and applications. Funkcialaj Ekvacioj, 21, 151-192 (1978).
- [4] Y. Meyer et R. Coifman: Opérateurs pseudo-différentiels et théorème de Calderón. Cours de 3ème cycle (1976-1977) et exposé au séminaire d'Analyse Harmonique d'Orsay (1976).
- [5] S. Mossaheb et M. Okada: Une classe d'opérateurs pseudo-différentiels bornes sur $L^r(\mathbb{R}^n)$, $1 < r < \infty$. Ibid. (1976).
- [6] T. Muramatu: On the boundedness of a class of operator-valued pseudodifferential operators in L^{p} -space. Proc. Japan Acad., 47, 94–99 (1973).
- [7] —: Functional Analysis and Partia Differential Equations (ed. by K. Yosida and S. Itoh), Part II, Chap. 2, Iwanami Shoten, Tokyo (1976) (in Japanese).
- [8] M. Nagase: The L^p-boundedness of pseudo-differential operators with nonregular symbols. Comm. in P.D.E., 2(10), 1045-1061 (1977).

296