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1. Introduction. This note is concerned with the initial-boundary
value problem:
( 1 ) u+((u))+u u 0, t R, x e (0, 1),
( 2 ) u(0, x)= g(x), x e (0, 1),
( 3 ) u(t, O)=u(t, ), t e R,
where 0, is a unction of class C(R) satisfying (0)=0 and g is a
given initial function satisfying g(0)= g(1).

The pseudo-parabolic equation (1) is understood to be a generaliza-
tion of model equations or long water waves of small amplitude (see
for instance [1]). The equation (1) is also regarded as a regularization
of the generalized Kortweg-de Vries equation

( 4 ) u+ ((u))x+Uxxx O.
For the parabolic regularizations of the generalized KdV equation,
see [4].

Here we treat the initial-boundary value problem (1)-(3) from the
viewpoint of the semigroup theory and describe the properties of
solutions of the problem in terms of nonlinear group in a Hilbert space.

2. Theorem. We denote by II" the norm of the Lebesgue space
L(0, 1). For each positive integer m, we write V for the closed sub-
space of the Sobolev space H(0, 1) defined by

V=(v e H’(O, 1); v(O)=v(1),
We also denote by D the differential operator d/dx from H(0, 1)into
L(0, 1), i.e., D is defined by Dv=v’ for v e H’(0, 1).

Now we define a linear operator L, from V into V by

Lv=lDv for v e V,
and a nonlinear operator F on V b’y

for v e V and x e [0, 1], where

K,(x, ): sgn(x--,)(exp( ]x--’l.)--exp(1--,x--, )} or x , [0, 1]
2(1-- e) /- /-

Note that w=_F,v gives a unique solution of the boundary value problem



No. 8] 291

w"-w=((v))’+ Iv’ w(o) =w(), w’(o) =w’().

We then see that L, is the infinitesimal generator of .a linear group
{U(t) t e R} o isometries on the Hilbert space V. Also, we see that
F is Frchet differentiable over V and Lipschitz continuous on each
bounded subset o V (cf. [3]). In view of these acts, we see that
L+F, generates a nonlinear group (G,(t) t e R} of C-diffeomorphisms
on V (c. [2]). More precisely, we have the ollowing result.

Theorem. For each 0, there exists a nonlinear group (G(t);
t e R} of C-diffeomorphisms on V satisfying the following properties"

( ) G(t)g--U(t)g+.[i U(t-s)F(G(s)g)ds for t e R and g e V.
(ii) If g e V, then G,(t)g is of class C(R V) as a V-valued func-

tion on R and
(d/dt)G(t)g--(L+F)G(t)g=dG(t; g)(L+F)g for teR,

where dG(t g) denotes the Frgchet derivative of G,(t) at g.
(iii) Each of G(t) maps V into itself for
(iv) Let g e V and set u(t, x)= [G(t)g](x) .for (t, x) e R [0, 1].

Then u gives a solution of the problem (1)-(3) in the sense that u
satisfies the equality

x)w’(x)}dx=O

for every t e R and w e V. If in particular, g e V, then u satisfies
the equation (1) pointwise on R (0, 1).

(v) IIGo(t)gll+llDG(t)gl]=llgll+llDg]l for teR and ge V.
(vi) llDG,(t)gll--2 o ([G(t)g](x))dx=]lDgll--2 o (g(x))dx

for t e R and ge V, where ()=.[: (r)dr for e R.

(vii) For each m2, there is a monotone increasing function
a "[0, c)-,[0, c) such that

G(t)g 4-II DG(t)gl + D G(t)gl

for t e R and g e V /.

We refer to [2] tor the proof of the assertions (i) and (ii). The
properties (iii)-(vi) are obtained in a manner similar to [3]; and the
estimates in (vii) are established by solving Bellman-Bihari integral
inequalities.

In view of the properties (v) and (vii), it can be shown that if
g e V then G.(t)g converges as -.0+ to a function in the space
C([- T, T] L(0, 1)), tor every T>0 and the limit unction furnishes
a "solution" of the generalized KdV equation (4). For the detailed
argument concerning above acts, we shall publish it elsewhere.
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