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(Communicated by Shokichi IYANAGA, M. l. A., Nov. 12, 1979)

1o Introduction. Let u" [0, 1] R+-.R, x" [0, 1]-R+ and con-
sider the following problem"

Maximize : u(t,

subject to

(R+ designates the non-negative orthant of R.) The variational pro-
blem o this type has a lot of interesting applications to economic
analysis (c. Aumann-Shapley [3], Kawamata [7], and Yaari [9]).
Aumann-Perles [2] first examined this problem and established a set
of sufficient conditions, which assures the existence o an optimal
solution. Berliocchi-Lasry [4] and Artstein [1] generalized the pro-
blem and proved the existence o solutions respectively in quite
different ways.

In this paper, I am going to get a urther extension o the pro-
blem, the application of which can be seen in recent formulations of
welfare economics (cf. Kawamata [7]).

2. An extension of the problem. Let T be a compact metric
space, and t be a non-atomic, positive Radon measure on T with t(T)
C + oo. We designate by the set of all positive Radon measures

/ on T such that
(i) #(# (ii) #(T)C.

Let X be a locally compact Polish space, and let
u" TX-R
gi" TX--+/ i--l, 2,...,!.

Then our problem is"

Maximize u(t, x(t))d/
x JT

subject to

(I) a) rg(t’x(t))dt=( i= l, 2, ,1

b) / e )p
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c) x" T-X is measurable
where (, w,..., w) is a fixed vector.

p e , and x: T--,X determine the disintegration of the form:

T

Hence our problem is equivalent to the problem:

(II)

Maximize u(t, x)d.
TXX

subject to

a) rxg(t’
b) r is of the form (,).

i=1, 2, ...,l

I am indebted to Berliocchi-Lasry [4] for such a transformation of the
original problem (I) into the form (II) and a full use of disintegration
theory in this problem. In comparison to Berliocchi-Lasry [4], where
/ is always fixed, we regard ff as one of the control variables as well
as. x.

3. Disintegration of measures. Let " be a Radon measure on
T X which can be expressed as

r= (R)[t]dff(t),

where is the Dirae measure at t, ff is Radon measure on T, and , t
[t] is a weak*-measurable mapping on T into the set o 11 Radon
probability measures, on X. I such expression is possible, , is said
to have a if-disintegration. We designate by () the set o 11 Radon
measures on T X that hve if-disintegrations, and put

(,)= ().

It my be convenient to collect here a ew results on disintegra-
tion oi measures which are useful in lter .discussions.

T and X are assumed to be compact throughout this section.

Proposition I (Castaing [5]). Let F T .X be a measurable
multi-valued mapping such that F(t)X is compact for all t e T. Then
a Radon measure on T XX has a disintegration of the form"

supp ,[t]cF(t) a.e. (t)

if and only if

f(t, x)dy <=| f(t, x)dffsup
TXX JT xI’(t)

for all f e C(Tx X), the set of all continuous real-valued functions on
TxX.

Proposition 2 (Maruyama [8]). Consider
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=| (R),[t]d/ n=1,2,
T= ,(R),[t]d#.

(i) /
a) w*-lim/
b) tt implies w*-lim,[t]=,[t]/or all n

(continuity}
c) w*-lim,[t]=,[t]/or all t e T,

(pointwise convergence}
then w*-lim=.

(ii) w*-lim= implies a). But b) and c) are not necessarily
true.

Proposition 3. () is weak*-compact and convex.
4. Positive normal integrands. A function g" T

called a positive normal integrand (PNI) if there exists a function
h" T X-++ such that

( ) h is (Bored measurable,
(ii) h(t, x) is lower semi-coninuous in x for -almost every t,
(iii) h(t, .)= g(t, .) for -almost every t.
The following lemma can easily be proved.
Lemma 1. I/ T and X are compact and g is a PNI, then the

mapping

rrxg(t,x)dr
i loer emi-eotio o A().

Le g, g, ., g be PNI’s and le A( g, g, ., g) be he se of
all r A() such that

(t,

If T and X are eomae, then we can conclude, from Lemma 1, tha
A ( g, g,..-, g) is weak*-eompaet.

We can extend this resul to the ease where X is locally compact.
Proposition 4. Let T be eomet, X be loeallg eompaet, ad X

=X U {} be the oe-oit
(t, )= (t,)+ (.e. ) ,

=1

5. Existence of optimal solutions. Proposition 5. Amethe
ollowig three eoditio o " TXXR.

( ) i Borel measurable,
()
(iii)

u(t, x) is upper semi-continuous in x for #-almost every t,
for any 0, there exists a b, e L(f) such that

u/ (t, x) >= b,(t)@u/ (t, x) geg(t, x)
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(A)

Let

where u (t, x)=Max {u(t, x), 0}.
Then the mapping

rfr u(t, x)dr
is upper semi-continuous on (; g, g,..., g).

By Propositions. 4 and 5, the ollowing problem (A)has a solution.

Maximize [ u(t, x)dy on zl (; g, g, ..., g).
JTX

[* =fr 3(R),*[t]d#*
be a solution of (A). Then .* is. obviously a solution of the problem"

I" u(t, x)d, on zl ([* g, g., ...,(B) Maximize g).
JTXX

Remark. (#* g, g, ..., g) is also weak*-compact and convex.
See Berliocchi-Lasry [4].

In order to approach our final goal, we have to prepare a couple
o results 2rom convex analysis. Proposition 6 comes 2rom
Carathodory’s theorem, and Proposition 7 is an easy corollary o
Ljapunov’s convexity theorem. For the detailed proofs, see Berliocchi-
Lasry [4].

Proposition 6. Let be a locally convex topological linear space
and K be a compact, convex subset of . Let : 5-R (i=1, 2, ..., l)
be ane functions and define

H={x e Kl g(x)gO i=1,2, ..., 1}.
Then any extreme point of H can be expressed as a convex combina-
tion of at most (l+ l) extreme points of K.

Proposition 7. Let be a finite non-atomic measure on T and
consider the formulas:

f,(t)d# i=1, 2, .,
iO, =1.

Then there exists a decomposition T, T, ..., T of T such that

=1 T =1 T

Since the mapping T[ u(t, x)dT is linear and A (Z* g, g, ., g)
JTXX

is convex, * can be assumed to be an extreme point o A (Z*; g, g,
.., gt) without loss of generality. Hence by Proposition 6, there

exist measurable mappings x TX (] 1, 2, ., + 1)

l+l

0, =1.
j=l
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fTX
TX

If we define

By Proposition 7, there exists a decomposition T, T.,..., T/ of T
such that

/+1

u(t, x)gr*= u(t, x(t))dz*

g(t, x)d’*=f gt, x(t))dz* i=1,2,...,1.

+1

hen (/*, *) is a solution o our problem (I), where Z() is he char-
acteristic unction o T. The idea o constructing x*(t) by using

Propositions 6 and 7 is completely due to Berliocchi-Lasry [4].
Summing up, we have
Theorem. Assume the followings"
a) u" TX--R satisfies the conditions (i), (ii) and (iii) in Prop-

osition 5
b) g" T X--+ (i=1,2, ...,1) is a PNI such that g(t, x), g(t, x)-++ oo (a.e. #) as x-+oo.

i=l

Then our problem (I) has a s,olution.
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