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(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1979)

1. Introduction. Let u:[0, 1]XR.—R, 2:[0,1]-R. and con-
sider the following problem :

Maximize r u(t, x(t)dt
x 0
subject to
f e®dt=1,1, - -, 1).
0

(R%. designates the non-negative orthant of R*.) The variational pro-
blem of this type has a lot of interesting applications to economic
analysis (cf. Aumann-Shapley [3], Kawamata [7], and Yaari [9]).
Aumann-Perles [2] first examined this problem and established a set
of sufficient conditions which assures the existence of an optimal
solution. Berliocchi-Lasry [4] and Artstein [1] generalized the pro-
blem and proved the existence of solutions respectively in quite
different ways.

In this paper, I am going to get a further extension of the pro-
blem, the application of which can be seen in recent formulations of
welfare economics (cf. Kawamata [7]).

2. An extension of the problem. Let T be a compact metric
space, and z be a non-atomic, positive Radon measure on T' with #(7)
=C<+oc0. Wedesignate by I, the set of all positive Radon measures
pon T such that

(i) pgp () p(DC.
Let X be a locally compact Polish space, and let
u: TxX—R
g,: TxX—>R, ; i1=1,2,--.,1
Then our problem is:

Maximizej w(t, 2(0)dy
24 T
subject to
(1) o [ ottadp=o. 5 =12,
T
b) peM,
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¢) z:T—X is measurable
where (o, o, - - -, ;) is a fixed vector.
pe M, and x: T—X determine the disintegration of the form:
() Tz‘[T 0,3,y dpe.
Hence our problem is equivalent to the problem:
M a,ximizej u(t, x)dy
T I'xX
subject to
o [ etodrse ; i=12-
TXX
b) 7 is of the form (x).
I am indebted to Berliocchi-Lasry [4] for such a transformation of the
original problem (I) into the form (II) and a full use of disintegration
theory in this problem. In comparison to Berliocchi-Lasry [4], where

p is always fixed, we regard . as one of the control variables as well
as z.

D

3. Disintegration of measures. Let 7y be a Radon measure on
T x X which can be expressed as

r=[ s@itau,

where 4, is the Dirac measure at ¢, ¢ is a Radon measureon T, and v: ¢
—y[t] is a weak*-measurable mapping on T into the set of all Radon
probability measures on X. If such a expression is possible, 7 is said
to have a p-disintegration. We designate by 4(x) the set of all Radon
measures on 7' X X that have p-disintegrations, and put
AR) =\ 4(@).
rEMp

It may be convenient to collect here a few results on disintegra-
tion of measures which are useful in later discussions.

T and X are assumed to be compact throughout this section.

Proposition 1 (Castaing [5]). Let I': T—»X be a measurable
multi-valued mapping such that I'(t)C X is compact for allte T. Then
a Radon measure y on T X X has a disintegration of the form:

{r ~[ a@tay
supp v[tlCI'(t) a.e. (1)
if and only if
erx /@ x)drng xselzl"g) J (b, @)y

for all fe C(TXX), the set of all continuous real-valued functions on
TxX.

Proposition 2 (Maruyama [8]). Consider



350 T. MARUYAMA [Vol. 55(A),

rn=j 0, Qu,ltldp, ; n=1,2,---
T

T=L 5,Qultldu.
i) If

a) w*limp,=p
b) t,—t tmplies w*-limy,[t,1=v,[t] for all n
{continuity)
¢) w*limy,[t]=v[t] for allte T,
{pointwise convergence)
then w*-limy,=ry.

(i) w*limy,=y implies a). But b) and c) are not necessarily
true.

Proposition 3. 4(I,) is weak*-compact and convex.

4. DPositive normal integrands. A function g: TXX—R, is
called a positive normal integrand (PNI) if there exists a function
h: TxX-—R, such that

(i) his (Borel) measurable,

(ii) ~(t, x) is lower semi-continuous in x for g-almost every ¢,

(ii) A, -)=9@, -) for g-almost every t.

The following lemma can easily be proved.

Lemma 1. If T and X are compact and g is a PNI, then the
mapping

THI g(t, x)dy
TXX

is lower semi-continuous on A(M,).
Let 95, 925 - -+, 9, be PNT’s and let 4(0%,; g,, 95, - - -, 9,) be the set of
all y € 4(9%,) such that '

I 9., o)dy<w,  foralli=1,2,...,1L
TXX

If T and X are compact, then we can conclude, from Lemma 1, that
4 @Ny5 915 sy -+ -5 90) is weak*-compact.
We can extend this result to the case where X is locally compact.
Proposition 4. Let T be compact, X be locally compact, and X
=X U{oo} be the one-point compactification of X. If

l
g(t, 2)=>" 9,(t, ¥)—>—+ o (a.e. f)  as x—oo,
t=1

then 4 (M5 91, 95, - - -5 90) i weak*-compact and convex.
5. Existence of optimal solutions. Proposition 5. Assume the
following three conditions for u: T X X—R.
(i) wuis Borel measurable,
(il) w(t, x) is upper semi-continuous in x for p-almost every t,
(iii) for any >0, there exists a b, € L>(z) such that
u* (¢, 2)=b,(D)=>u" (¢, ©) Zeg(t, )
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where u*(t, x) =Max {u(t, x), 0}.
Then the mapping

THJ u(t, v)dy
I'xX

s upper semi-continuous on 4 (M, ; gy, gop * + +, 91).
By Propositions 4 and 5, the following problem (A) has a solution.

(A) Magimize IM ult,wydy  on 4 (M3 gy, Gan - -y G-
Let
r*=L 5. @v¥[tldy*
be a solution of (A). Then y* is obviously a solution of the problem:
(B) Magimize jm wt, w)dy  on A (¥ gy g - -, 0.

Remark. 4 (¢*; 9,9, ---,9,) is also weak*-compact and convex.
See Berliocchi-Lasry [4].

In order to approach our final goal, we have to prepare a couple
of results from convex analysis. Proposition 6 comes from
Carathéodory’s theorem, and Proposition 7 is an easy corollary of
Ljapunov’s convexity theorem. For the detailed proofs, see Berliocchi-
Lasry [4].

Proposition 6. Let X be a locally convex topological linear space
and K be a compact, convex subset of X. Let ¢,: X—>R (i=1,2,.--,0)
be affine functions and define

H={xec K|p()<0; i=1,2, ---,1}.
Then any extreme point of H can be expressed as a convex combina-
tion of at most (I+1) extreme points of K.

Proposition 7. Let p be a finite non-atomic measure on T and

consider the formulas:

Epj 21‘[ fu(t)dﬂ ;o 1=1,2,--,m
j=1 T
4,20, X 2=l
j=1
Then there exists a decomposition T, T,, - -+, T, of T such that

54 [ riwan=3% [ ridn 5 =12,
= =l

Since the mapping THI u(t, x)dy is linear and 4 (¢* ; 9, o5 -+ +5 91)
TXX

is convex, 7* can be assumed to be an extreme point of 4 (u*; g,, 9,
..+, 9,) without loss of generality. Hence by Proposition 6, there
exist measurable mappings z,: T—-X (j=1,2, ---,1+1)

141
= jZ=1 A4 J‘T 0:&05;,dp*

4,20, 3=

=1
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By Proposition 7, there exists a decomposition T, T,, ---,T,,, of T
such that

f ut, dr = [ utt, @ &)du*
TXX i1y

I+1
J 9:(t, ®)dr* =3 I gt z,@)dp* ;3 i=1,2,-.-,1
TXX j=1J 7Ty
If we define

24 =3 1,0,

then (1*, 2*) is a solution of our problem (I), where y, () is the char-
acteristic function of 7,. The idea of constructing x*(¢) by using
Propositions 6 and 7 is completely due to Berliocchi-Lasry [4].

Summing up, we have

Theorem. Assume the followings:

a) u:TXX—R satisfies the conditions (i), (ii) and (iii) in Prop-
osition 5;

b) 9:TXxX—-R, (¢=1,2,---,0) is a PNI such that g(t, x)

L
=3 9t, )=+ oo (a.e. z) as x—>oo.
i=1

Then our problem (1) has a solution.
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