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1. Introduction. We treat linear partial differential operators
with constant coefficients of order m"

P--P(D), D=(D, ..., D,), D-- I 3 P(D) isits principal part.

We consider the problem of characterizing geometrically the open sets
which are P-convex in the case P is independent of some of the varia-
bles.

Generally an open set/2 in R is called P-convex if for every com-
pact set K in/2, there exists a compact set K’ in/2 such that for every
u in

supp P(--D)ucK implies supp ucK.
The importance of this concept lies in the following property of

P-convex sets proved by B. Malgrange [3]: The equation P(D)u--f
in/2 has a C solution u for every f in C(9) if and only if/2 is P-
convex.

It is well known that an open convex set is P-convex for every dif-
ferential operator P. However, complete characterizations of P-
convexity are known only in the following cases"

1) P is elliptic (L. HSrmander [1]),
2) n-2 (L. HSrmander [1]),
3) P is of first order (E. C. Zachmanoglou [10]),
4) n-3, P is of principal type, i.e. P($)=0 implies grad P()

4=0 and 9 is C (J. Persson [8]),
1 , D, and 3t9 is C (J. Persson [9]).5) P(D) DD+
__
=

We restrict our attention to the operators as above, and we con-
sider them as operators in R+. Consequently, they are independent
of the variables (x/, .., x /,).

Under these somewhat restricted situations, we obtain a sufficient
condition for P-convexity with respect to such operators.. Especially,
in the case 1), we show that the sufficient condition is also necessary.

In 2, we shall give the definition and the properties of uniqueness
cones, and in Theorem 1 we shall obtain a sufficient condition for P-
convexity in general cases. In 3, we shall treat the operators 1)-5)
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in R , and obtain a sufficient condition for P-convexity in such cases.
And we shall show that in the case 4) the hypothesis that P is of prin-
cipal type can be relaxed to constant multiplicity.

2. Results in general cases. The trick we use lies in the unique-
ness cones which are introduced in J. Persson [5].

Definition 1. Let M be a proper open convex cone ill R with
vertex 0. For an element y of R, we set

K(M, y) {x e R (x-- y, } 0 for every $ e M}.
And let N be an element of M. Then we set

K(N,M, y,p)={xe K(M, y): (x-y,N}>-p},
I M is contained in { e R P():/:0}, we call K(N, M, y, p) a unique-
ness cone of P at y.

Then we have the iollowing lemma obtained in J. Persson [5].
Lemma 1. Let u be an element of )’(9), and let K(N, M, y, p) be

a uniqueness cone of P which is contained in 9. Let
P(D)u 0 near K(N, M, y, p),

(1) u=0 near K(N, M, y, p) {x (x--y, N}= --p}.
Then,

u= 0 in Int K(N, M, y, p).
(Here we call the set in (1) a bottom of the cone.)

The proof follows rom Holmgren’s uniqueness theorem. This
lemma shows that the zeros of the distribution solutions of the equa-
tion P(D)u=O propagate along the uniqueness cones o P. Especially,
i P is elliptic, M can be chosen arbitrarily close to an open hal space.
So uniqueness cones of P can be chosen arbitrarily close to segments or
hal lines, and the zeros of the solutions propagate along every seg-
merit. We remark that this lemma is true even if u is a hyperiunction,
since Holmgren’s theorem is true or hyper2unctions. So all the results
on unique continuation o solutions as ollows are true or hyperfunc-
tions.

Next, by a chain of cones, we mean a finite set of cones {K}, such
that the bottom of K is contained in K_.

Definition 2. Let K be a compact subset of/2. We set
/(P,/2) K {x e K x cannot be connected to 9 or to the infinity

by a chain of uniqueness cones o2 P in K.}, and we call it the weak
P-hull of K in [2.

Especially, i P is elliptic,/(P, 9) is the compact subset of 9 con-
sisting of the union of K and all connected components of K which
are relatively compact in/2. The following lemma is a direct conse-
quence of Lemma 1.

Lemma 2. Let K be a compact subset of 9, and let u be an ele-
ment in ’(). Then

supp P(--D)ucK implies supp u/(P,
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Now we can give a sufficient condition for P-convexity.
Theorem 1. If I(P, 9) is compact in [2 for every compact subset

K of [2, then [2 is P-convex.
We emphasize that in the cases 1)-5), this sufficient condition given

in Theorem 1 is also necessary, i.e. in these cases,
(2) is P-convex if and only if I(P, [2) is compact in [2 for every

compact subset K of [2.

:. Results in the case P is independent of some of the variables.
From now on, we consider the operator P(D) in R/ such that P is
independent of (x/,..., x/), i.e. P acts on a linear subspace R of
R/. To avoid confusion, when we consider P as an operator in R,
we denote it by P’. And we investigate P-convexity of an open set/2 in
R/. We use the following notations:

R x=(x’, x") eRR,
[2={x e 9 x"=a}, K={x e K: x"=a}, a e R.

Here K is a compact subset of 9.
Now we obtain a necessary condition or P-convexity. In the fol-

lowing statements, when we consider P’-convexity o2/2, we look upon
9 as an open set in R.

Theorem 2. Let P’(D’) be a differential operator in R, and we
denote it by P(D) when we consider it in R/. Then, if [2 is P-con-
vex, [2 is P’-convex for every a in R.

Proof. We show that i 2or an a in R 9 is not P’-convex,/2 is
not P-convex.

If 9 is not P’-convex, there exist a compact subset K of 9 and
a sequence u(x’) in e’(/2) such that

supp P’(--D’)ucK and dist (supp u, 9)-+0 if
So we set

v(x) u(x’)(x" a).
Then v is an element of e’(/2) such that

suppP(--D)vK and dist (supp v,9)-0 if ]-c.
Consequntly/2 is not P-convex.

From the case P’ is elliptic in R, we can easily show that this
condition is not sufficient. But we obtain a sufficient condition for P-
convexity if P’ satisfies (2) in Rn.

Theorem :. Let P’ satisfy (2) in R, and let [2 be an open set in
R/. We assume for every a in R 9 is P’-convex and
is compact in 9. Then [2 is P-convex.

Proof. It easily follows, from definition that a uniqueness cone of
P at y can be chosen arbitrarily close to an n-dimensional cone in
R/{x:x"=y"} which is identical with the uniqueness cone of P’ at
y’ in R/{x: x"=y"}, i.e. which is parallel to R. Consequently,
/(P, 9) is identical with [_)/(P’, 9) and is compact in/2 from the
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hypothesis. So by Theorem 1,/2 is P-convex.
Especially i P’ is elliptic in R, the hypothesis in Theorem 3 is

also necessary. Consequently we obtain a complete characterization
of P-convexity in this case.

Theorem 4. Let P’ be elliptic in R, and let tO be an open set in
R/. Then is P-convex if and only if [2 satisfies the hypothesis of
Theorem 3.

The proof is a slight modification o that o Theorem 4 in E. C.
Zachmanoglou [10]. In [10], he treated the case P is o first order,
but the argument in [10] is. applicable to this case. See [10].

Proof. We have only to prove the necessity. Suppose that for
compact subset K o 9, K(P’, 9) is not compact. Then there is a
sequence {x} o points in /(P’, 9) converging to a point x belong-
ing to [)/(P’, 9)]. Since K is compact, we ma:g assume that {x}
is contained in K. Let W be the connected component o K

{x e R/" x"= x"’} which is relatively compact in/2 and which con-
rains x. Let W0 be the connected component oK {x e R/" x"=x
which contains x. Since x belongs to [/(P’, 9)], W0 must be
either unbounded or it must intersect 9. I W0 is unbounded, x is
the end point of an unbounded polygonal path which lies in W0. This
path is closed and does. not intersect K, hence its. distance rom K is
positive. This. clearly implies that or sufficiently large i, W is also
unbounded. This. is a contradiction, hence W0 must intersect 9. So
it easily follows that dist (W, t9) tends to zero. We remark that
is contained in K.

We shall find u in e’(9) such that
supp u-W and supp P(--D)uc W.

Then/2 is not P-convex and the proof is completed. We set
v(x")=(x"- x").

Then
supp v=(x e R/" x"=x"’} and P(--D)v=P’(--D’)v=O.

Let w(x’) be an analytic solution of P’(--D’)w(x’)=O, and we set
u(x) (x’)w(x’)v(x")

where Z is the characteristic unction of W in R. Then u satisfies
the properties we have mentioned above.

Obviously romwhat we have mentioned, Theorem 3 can be applied
also to the cases 2)-5). But the auther doesn’t know whether the
hypothesis oi Theorem 3 is necessary or not in these cases.

Finall.y we remark that in the case 4), the hypothesis P is o prin-
cipal type can be relaxed to constant multiplicity. In act, unique-
ness cones are defined independently of mutiplicity and null solutions
can be constructed in constant multiplicity case. See J. Persson [6],
[7] or H. Komatsu [2].
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