$$
A_{-}=\frac{1}{2}\left(\begin{array}{cc}
-i \xi & -(1+i \xi) e^{-i(x+x-\eta)} \\
(1+i \xi) e^{e(x+x-\eta)} & 2+i \xi
\end{array}\right) .
$$

The fact that (20) has two regular singularities and an irregular singularity of rank one implies that the deformation equation $d \Omega-\Omega^{2}$ $=0$ is integrable in terms of a Painleve transcendent of the fifth kind. In our case, substituting (22) to

$$
x \frac{d A_{ \pm}}{d x}=\left[\left(\begin{array}{cc}
0 & e_{12} \tag{23}\\
e_{21} & \pm i x
\end{array}\right), A_{ \pm}\right]
$$

we obtain (7) and

$$
\begin{equation*}
x \frac{d \chi}{d x}=2 \xi \cos ^{2}\left(\frac{\eta}{2}\right)+2 i \sin ^{2}\left(\frac{\eta}{2}\right) \tag{24}
\end{equation*}
$$

Finally (18) yields

$$
\begin{align*}
\frac{d}{d x} \log \rho(x) & =i\left(A_{+}-A_{-}\right)_{22}+\frac{1}{x} e_{12} e_{21} \tag{25}\\
& =\xi+\frac{1}{2 x}\left(1+\xi^{2}\right)(1+\cos \eta)-\frac{1}{x}
\end{align*}
$$

which is the results (3) and (8).
Erratum and comment for XI [9].
p. 8, (37) [9] should be corrected as $\sigma[M]=\tau\left[T_{M}\right]^{2}$.

Theorem 5 has previously been obtained by Widom [10]. He has also shown [11] that the product of half infinite Toeplitz operator (32) [9] of M with that of M^{-1} differs from 1 by a trace-class operator, and that $\sigma[M]$ coincides with its determinant. The authors wish to thank Prof. H. Widom for calling their attention to his results.

References

[1] H. G. Vaidya and C. A. Tracy: Phys. Rev. Lett. 42, 3-6 (1979).
[2] M. Jimbo, T. Miwa, and M. Sato: Proc. Japan Acad. 55A, 267-272 (1979).
[3] A. Lenard: J. Math. Phys. 5, 930-943 (1964).
[4] M. Hukuhara, T. Kimura, and T. Matuda: Equations différentielles ordinaires du premier ordre dans le champ complexe. The Mathematical Society of Japan (1961) .
[5] H. G. Vaidya and C. A. Tracy: Phys. Lett. 68A, 378-380 (1978).
[6] T. D. Schultz: J. Math. Phys. 4, 666-671 (1963).
[7] H. G. Vaidya: Thesis. State Univ. of New York at Stony Brook (1978).
[8] M. Sato, T. Miwa, and M. Jimbo: Publ. RIMS. Kyoto Univ., 15, 201-278 (1979).
[9] -: Proc. Japan Acad. 55A, 6-9 (1979).
[10] H. Widom: Adv. Math. 13, 284-322 (1974).
[11] -: Proc. Amer. Math. Soc. 50, 167-173 (1975) ; Adv. Math. 21, 1-29 (1976).

