7. Representation Groups of the Group $Z_{p^{n}} \times Z_{p^{n}}$

By Kanzi Suzuki
Department of Mathematics, Waseda University
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1980)

Introduction. The dihedral group D_{2} and the quaternion group Q_{2} of order 8 have the same character table (Feit [1, $\S \S 7$ and 11]). Generally the two non-abelian groups of order p^{3} (p a prime number) have the same character table (Brauer [3, §4]). It is easily shown that these groups are characterized as the representation groups of the product $\boldsymbol{Z}_{p} \times \boldsymbol{Z}_{p}$ of cyclic groups of order p.

In this note, we consider the representation groups of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$, the product of cyclic groups of order p^{n}, and we deal with those complex characters. In § 1, we show that there exist two non-isomorphic representation groups of $Z_{p^{n}} \times Z_{p^{n}}$ (Theorem 1). When $n \geqq 2$, these groups have not the same character table (§ 3, Corollary 2), but have the conjugacy classes of the type described in Proposition 1. Their non-linear irreducible characters are constructed by the abelian residue groups of certain normal subgroups (Theorem 2).

1. Generators and relations. Let G be a finite group and C^{*} the multiplicative group of the complex number field C. When G acts trivially on C^{*}, the finite abelian group $H^{2}\left(G, C^{*}\right)$ is called the Schur multiplier of G. A group H is called a representation group of G when H has a central subgroup A such that 1) $H / A \cong G$, 2) $|A|$ $=\left|H^{2}\left(G, C^{*}\right)\right|$ and 3$) A$ is contained in the commutator subgroup $D(H)$.

Let H be a representation group of $Z_{p^{n}} \times Z_{p^{n}}$, where p is a prime number and n is a positive integer. The sequence

$$
1 \rightarrow A \rightarrow H \rightarrow Z_{p^{n}} \times Z_{p^{n}} \rightarrow 1
$$

is exact, and $A=D(H)$ is contained in the center $Z(H)$ of H. We choose representatives t, r of inverse images of two generators of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$. Then A is the cyclic group generated by the commutator $s=t^{-1} r t r^{-1}$ of order p^{n}, because $H^{2}\left(\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}, C^{*}\right) \cong \boldsymbol{Z}_{p^{n}}$ (see Suzuki [2, p. 261]).

Consequently, the elements t, r and s generate H, i.e.,
(1)

$$
H=\langle t, r, s\rangle
$$

and satisfy the relations

$$
\begin{equation*}
r^{p^{n}}, \quad t^{p^{n}} \in\langle s\rangle, \quad s^{p^{n}}=1 \tag{2}
\end{equation*}
$$

(3)

$$
t s=s t, \quad r s=s r \quad \text { and } \quad t^{-1} r t=r s
$$

where p^{n} is the least positive integer q such that $t^{q} \in\langle s\rangle$ (this p^{n} is also the least positive integer q such that $r^{q} \in\langle s\rangle$). Note that $A=Z(H)$.

It is clear that groups defined by the relations (1)-(3) are representation groups of $Z_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$.

Theorem 1. There is only two non-isomorphic representation groups of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$.

Proof. Let H be a representation group of $Z_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$ defined by the conditions (1)-(3). Since $\langle t, s\rangle$ and $\langle r, s\rangle$ are abelian groups of order $p^{2 n}$, we may consider the following three cases:

$$
\begin{aligned}
& H_{1}=\langle t, r, s\rangle ; t^{p^{n}}=r^{p^{n}}=s^{p^{n}}=1, t s=s t, r s=s r=t^{-1} r t \\
& H_{2}=\langle t, r\rangle ; t^{p^{n}}=r^{p^{2 n}}=1, t^{-1} r t=r^{1+p^{n}},\left(r^{p^{n}}=s\right) \\
& H_{3}=\langle t, r\rangle ; r^{p^{2 n}}=1, t^{p^{n}}=r^{p^{n}}, t^{-1} r t=r^{1+p^{n}},\left(r^{p^{n}}=s\right) .
\end{aligned}
$$

If p is odd or if $p=2, n \geqq 2$, then H_{2} is isomorphic to H_{3}, not isomorphic to H_{1}. If $p=2, n=1$, then $H_{1}=\langle t, r t\rangle$ is isomorphic to $H_{2}=D_{2}$ and is not isomorphic to $H_{3}=Q_{2}$.
2. Conjugacy classes. In the sequel, we denote by H a representation group of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$ with the conditions (1)-(3), and by $m(i, j)$ a non-negative integer such that $p^{m(i, j)}$ is the largest power of p dividing the greatest common divisor (i, j) of i and j.

Proposition 1. 1) The number of conjugacy classes of H is given by

$$
p^{2 n}+p^{n-1}\left(p^{n}-1\right) .
$$

2) Each conjugacy class of H not consisting of central elements is of the form

$$
\begin{equation*}
t^{i} r^{j} s^{k}\left\langle s^{p^{m(i, j)}}\right\rangle \tag{4}
\end{equation*}
$$

where $0 \leqq i, j \leqq p^{n}-1$ and $0 \leqq k \leqq p^{m(i, j)}-1$, except the case $i=j=0$.
Proof of 2). Each element h of H is uniquely expressible in the form

$$
h=t^{i} r^{j} s^{k_{0}}, \quad 0 \leqq i, j, k_{0} \leqq p^{n}-1 .
$$

If h is not contained in $Z(H)$, then i or j is a non-zero integer. Using the relation (3), we have

$$
\begin{equation*}
\left(t^{u} r^{v}\right)^{-1} h\left(t^{u} r^{v}\right)=h s^{u j-v i} . \tag{5}
\end{equation*}
$$

If we put $(i, j)=q p^{m(i, j)}$ with $p \nmid q$, the relation (5) yields that the conjugacy class containing h is given by $t^{i} r^{j} s^{k}\left\langle s^{\left.p^{m(i, j)}\right\rangle}\right\rangle$, where $k \equiv k_{0} \bmod p^{m(i, j)}\left(0 \leqq k \leqq p^{m(i, j)}-1\right)$.

Proof of 1). For a non-negative integer m, we consider the number of pairs of i and j satisfying the conditions that $0 \leqq i, j \leqq p^{n}-1$ and $m(i, j)=m$, except the case $i=j=0$. This number is given by

$$
\begin{aligned}
& p^{n-m} \varphi\left(p^{n-m}\right)+\varphi\left(p^{n-m}\right) p^{n-m}-\varphi\left(p^{n-m}\right)^{2} \\
& \quad=\varphi\left(p^{n-m}\right) p^{n-m-1}(p+1)
\end{aligned}
$$

where φ denotes the Euler function. Since k (resp. m) ranges over all non-negative integers less than p^{m} (resp. n), the number of the conjugacy classes of the form (4) is given by

$$
\sum_{m=0}^{n-1} p^{m} \varphi\left(p^{n-m}\right) p^{n-m-1}(p+1)=(p+1) p^{n-1} \sum_{m=0}^{n-1} \varphi\left(p^{n-m}\right)
$$

On the other hand the number of conjugacy classes consisting of a single central element is $|Z(H)|=p^{n}$, so the number of all conjugacy classes of H is given by

$$
p^{n}+(p+1) p^{n-1} \sum_{m=0}^{n-1} \varphi\left(p^{n-m}\right)=p^{2 n}+p^{n-1}\left(p^{n}-1\right)
$$

3. Irreducible characters. We shall construct complex irreducible characters of H.

Lemma 1. If a finite group G has an abelian normal subgroup N such that G / N is cyclic, then any irreducible character of G is induced from a linear character of a subgroup L containing N.

Remark. This Lemma is also true even if G / N is abelian (see Yamada [4, Theorem 1]).

Proof. Let χ be an irreducible character of G and λ a linear constituent of the restriction $\left.\chi\right|_{N}$ of χ to N. Let L be the inercia group of $\lambda: L=\left\{g \in G ; \lambda^{g}=\lambda\right\}$, where $\lambda^{g}(h)=\lambda\left(g^{-1} h g\right)$ for any $h \in N$. By Clifford's theorem there exists an irreducible character θ of L such that $\chi=\theta^{G}$ (θ^{G} denotes the induced character) and $\left.\theta\right|_{N}=e \lambda$ for some positive integer e. Since L / N is cyclic, we obtain $e=1$ (Feit [1, (9.12)]), which shows that θ is linear, and the proof is complete.

Now a representation group H has a maximal abelian normal subgroup $\langle r, s\rangle$. Since $H /\langle r, s\rangle$ is cyclic, we have the unique composition series over $\langle r, s\rangle$

$$
\langle r, s\rangle=L_{n} \subset L_{n-1} \subset \cdots \subset L_{1} \subset H
$$

where $L_{m}=\left\langle t^{p^{m}}, r, s\right\rangle$. Since $\left|H / L_{m}\right|=p^{m}$, it follows from Lemma 1 that H has a non-linear irreducible character of degree p^{m} induced from a linear character λ of $L_{m}(1 \leqq m \leqq n)$. Note that $\lambda(s)$ is a p^{m}-th root of unity, because $D\left(L_{m}\right)=\left\langle s^{p^{m}}\right\rangle$.

Lemma 2. The induced character λ^{H} is irreducible if and only if $\lambda(s)$ is a primitive p^{m}-th root of unity.

Proof. By Frobenius reciprocity theorem, we have

$$
\left(\lambda^{H}, \lambda^{H}\right)=\left(\left.\lambda^{H}\right|_{L_{m}}, \lambda\right)=\sum_{u=0}^{p^{m}-1}\left(\lambda^{t u}, \lambda\right)
$$

Hence λ^{H} is irreducible if and only if $\lambda^{t u} \neq \lambda$ for all integer $u \neq 0 \bmod p^{m}$. Since any element h of L_{m} has the form $h=t^{i p^{m}} r^{j} s^{k}\left(0 \leqq i \leqq p^{n-m}-1\right.$, $0 \leqq j, k \leqq p^{n}-1$), it follows from (5) that
(6) $\quad \lambda^{t u}(h)=\lambda(h) \lambda(s)^{u j} \quad\left(j=0,1, \cdots, p^{n}-1\right)$.

Therefore $\lambda^{t u} \neq \lambda$ for all integer $u \neq 0 \bmod p^{m}$ if and only if $\lambda(s)$ is a primitive p^{m}-th root of unity, which proves Lemma 2.

To determine irreducible characters of H, we define the normal subgroups

$$
T_{m}=\left\langle t^{p^{m}}, r^{p^{m}}, s\right\rangle, \quad(m=1,2, \cdots, n)
$$

and put

$$
\bar{T}_{m}=T_{m} /\left\langle s^{p^{m}}\right\rangle, \quad(m=1,2, \cdots, n)
$$

Then T_{m} is contained in L_{m} and \bar{T}_{m} is abelian.
For each $h \in T_{m}$, we denote by \bar{h} the image of h under the natural homomorphism $T_{m} \rightarrow \bar{T}_{m}$.

Theorem 2. A class function χ is an irreducible character of H of degree p^{m} if and only if

$$
\chi(h)= \begin{cases}0, & \left(h \oplus T_{m}\right) \tag{7}\\ p^{m} \mu(\bar{h}), & \left(h \in T_{m}\right),\end{cases}
$$

where μ is a linear character of \bar{T}_{m} whose restriction to $\langle\bar{s}\rangle$ is faithful.
Proof. Suppose that χ is an irreducible character of H of degree p^{m}, then χ is induced from a linear character λ of L_{m} and χ vanishes outside L_{m}. For each $h=t^{i p^{m}} r^{\jmath} s^{k} \in L_{m}$, we have from (6)

$$
\chi(h)=\lambda(h) \sum_{u=0}^{p^{m-1}}\left(\lambda(s)^{\jmath}\right)^{u} .
$$

Since $\lambda(s)$ is a primitive p^{m}-th root of unity, it follows that

$$
\sum_{u=0}^{p^{m-1}}\left(\lambda(s)^{j}\right)^{u}= \begin{cases}0, & \left(j \neq 0 \bmod p^{m}\right) \\ p^{m}, & \left(j \equiv 0 \bmod p^{m}\right)\end{cases}
$$

hence

$$
\chi(h)= \begin{cases}0, & \left(h \notin T_{m}\right) \\ p^{m} \lambda(h), & \left(h \in T_{m}\right) .\end{cases}
$$

If we define a linear character $\bar{\mu}$ of \bar{T}_{m} by putting $\bar{\mu}(\bar{h})=\lambda(h)$, then $\bar{\mu}$ is faithful on $\langle\bar{s}\rangle$, and

$$
\chi(h)= \begin{cases}0, & \left(h \notin T_{m}\right) \\ p^{m} \bar{\mu}(\bar{h}), & \left(h \in T_{m}\right)\end{cases}
$$

Conversely, let χ be a class function defined by (7). Since $D\left(L_{m}\right)$ $=\left\langle s^{p^{m}}\right\rangle \subset T_{m}$, the linear character μ of T_{m} given by $\mu(h)=\mu(\bar{h})$ is the restriction of a linear character λ of L_{m}. Since μ is faithful on $\langle\bar{s}\rangle$, $\lambda(s)$ is a primitive p^{m}-th root of unity. It follows that λ^{H} is irreducible by Lemma 2 and is equal to χ, which proves Theorem 2.

We describe the structure of \bar{T}_{m} of each group in Theorem 1. Putting $t_{0}=t^{p^{m}}, r_{0}=r^{p^{m}}$, we have

$$
\bar{T}_{m}=\left\langle\bar{t}_{0}, \bar{r}_{0}, \bar{s}\right\rangle .
$$

Case 1. If p is odd or if $p=2, n \geqq 2$, then in H_{1},

$$
\begin{gathered}
\bar{T}_{m}=\left\langle\bar{t}_{0}\right\rangle \times\left\langle\bar{r}_{0}\right\rangle \times\langle\bar{s}\rangle, \\
\left\langle\bar{t}_{0}\right\rangle,\left\langle\bar{r}_{0}\right\rangle \cong \boldsymbol{Z}_{p^{n-m}}, \quad\langle\bar{s}\rangle \cong \boldsymbol{Z}_{p^{m}},
\end{gathered}
$$

in H_{2},

$$
\begin{array}{rlrl}
\bar{T}_{m} & =\left\langle\bar{t}_{0}\right\rangle \times\left\langle\bar{r}_{0}\right\rangle, & \bar{s} & =\bar{r}_{0}^{p^{n-m}}, \\
\left\langle\bar{t}_{0}\right\rangle & \cong \boldsymbol{Z}_{p^{n-m}}, & \left\langle\bar{r}_{0}\right\rangle \cong \boldsymbol{Z}_{p^{n}},
\end{array}
$$

Case 2. If $p=2, n=1$, then in H_{1} and H_{3},

$$
\bar{T}_{1}=\langle\bar{s}\rangle, \quad\langle\bar{s}\rangle \cong Z_{2} .
$$

Corollary 1. The number of the irreducible characters of degree p^{m} of a representation group H of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$ is

$$
p^{2 n-1}(p-1) p^{-m} .
$$

Proof. By Theorem 2, this number is equal to the number of the linear characters of \bar{T}_{m} which are faithful on $\langle\bar{s}\rangle$. Noting that there exists a cyclic direct factor of \bar{T}_{m} which contains $\langle\bar{s}\rangle$, we can prove that this number is equal to $p^{2 n-1}(p-1) p^{-m}$.

Now let H, H^{\prime} be the two non-isomorphic representation groups of $\boldsymbol{Z}_{p^{n}} \times \boldsymbol{Z}_{p^{n}}$. We define a (set-theoretical) one-to-one onto mapping from $H=\langle t, r, s\rangle$ to $H^{\prime}=\left\langle t^{\prime}, r^{\prime}, s^{\prime}\right\rangle$: If $h \in H$ is written as $h=t^{i} r^{j} s^{k}$,

$$
h \mapsto h^{\prime}=t^{\prime i} r^{\prime \prime} s^{\prime k}
$$

where $0 \leqq i, j, k \leqq p^{n}-1$. By this mapping, a conjugacy class C of H corresponds to a conjugacy class C^{\prime} of H^{\prime} (see Proposition 1), thus we have a one-to-one onto correspondence between the set of conjugacy classes of H and the set of conjugacy classes of H^{\prime}. Furthermore, the subgroup $T_{m}=\left\langle t^{p^{m}}, r^{p^{m}}, s\right\rangle$ of H corresponds to the subgroup $T_{m}^{\prime}=\left\langle t^{\prime p^{m}}, r^{\prime p^{m}}, s^{\prime}\right\rangle$ of H^{\prime}.

We say that the group H and H^{\prime} have the same character table if there exists a one-to-one onto mapping from the set $\{\chi\}$ of irreducible characters of H to the set $\left\{\chi^{\prime}\right\}$ of irreducible characters of H^{\prime} which satisfies the condition $\chi^{\prime}\left(C^{\prime}\right)=\chi(C)$ for any conjugacy class C and any irreducible character χ.

Corollary 2. The two non-isomorphic representation groups of $Z_{p^{n}} \times Z_{p^{n}}$ have the same character table if and only if $n=1$.

Proof. The mapping $C \mapsto C^{\prime}$ induces the one-to-one onto mapping from \bar{T}_{m} to \bar{T}_{m}^{\prime} such that $\bar{t}_{0}, \bar{r}_{0}, \bar{s}$ corresponds to $\overline{t_{0}^{\prime}}, \overline{r_{0}^{\prime}}, \overline{s^{\prime}}$ respectively, for each $m(m=1,2, \cdots, n)$. Let \mathfrak{M}_{m} (resp. $\left.\mathfrak{M}_{m}^{\prime}\right)$ be the set of linear characters of $\bar{T}_{m}\left(\operatorname{resp} . \overline{T_{m}^{\prime}}\right)$ which are faithful on $\langle\bar{s}\rangle$ (resp. $\left.\left\langle\bar{s}^{\prime}\right\rangle\right)$. By Theorem 2, the groups H, H^{\prime} have the same character table in the above sense if and only if for each m there exists a one-to-one onto mapping $\bar{\mu} \mapsto \bar{\mu}^{\prime}$ from \mathfrak{M}_{m} to $\mathfrak{M}_{m}^{\prime}$ such that $\bar{\mu}^{\prime}\left(\overline{h^{\prime}}\right)=\bar{\mu}(\bar{h})$ for any $\bar{h} \in \bar{T}_{m}$ and any $\mu \in M_{m}$. It is easily seen that this happens only when $n=1$ and the corollary is proved.

Remark. The same argument can be applied to the case of central extensions of $\boldsymbol{Z}_{p^{2}} \times \boldsymbol{Z}_{p^{m}}$ by a cyclic group $\boldsymbol{Z}_{p^{n}}$ contained in the commutator subgroup. ($n \leqq m \leqq l$).

Acknowledgement. The author would like to thank Prof. S. Kondo and Prof. Y. Hinohara for their encouragement and advice.

References

[1] W. Feit: Characters of Finite Groups. Benjamin, New York (1967).
[2] M. Suzuki: Group Theory I, II. Iwanami Shoten Pub., Tokyo (1977) (in Japanese).
[3] R. Brauer: Representations of finite groups. Lectures on Modern Mathematics (ed. by T. L. Saaty). John Willey and Sons, vol. 1, pp. 133-175 (1963).
[4] T. Yamada: On the group algebras of metabelian groups over algebraic number fields. Osaka J. Math., 6, 211-228 (1969).
[5] R. J. Haggarty and J. F. Humphreys: Projective characters of finite groups. Proc. London Math. Soc., 36(3), 176-192 (1978).

