5. On the Microlocal Structure of a Regular Prehomogeneous Vector Space Associated with GL(8)

By Ikuzō Ozeki
The School for the Blind Attached to Tsukuba University, Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1980)

Let $V(n)$ be the n-dimensional vector space over C spanned by u_{1}, \cdots, u_{n}. Then the general linear group $G L(n)$ acts on $V(n)$ by $\rho_{1}(g)\left(u_{1}\right.$, $\left.\cdots, u_{n}\right)=\left(u_{1}, \cdots, u_{n}\right) g$ for $g \in G L(n)$.

Let V be the vector space spanned by skew-tensors $u_{i} \wedge u_{j} \wedge u_{k}$ ($1 \leq i<j<k \leq n$) of degree three. Then the action $\rho=\Lambda_{3}$ of $G L(n)$ on V is given by $\rho(g)\left(u_{i} \wedge u_{j} \wedge u_{k}\right)=\rho_{1}(g) u_{i} \wedge \rho_{1}(g) u_{j} \wedge \rho_{1}(g) u_{k}$. The triplet ($G L(n)$, Λ_{3}, V) is a regular prehomogeneous vector space if and only if $n=3,6$, 7 or 8 (see [1]). For the case $n=3,6$ or 7 , its microlocal structure has been investigated in [2]. In this article, we study the remaining case, i.e., $n=8$. We use the same notations as in [3].

A brief sketch of the present article and [3] had been given in [6].
§ 1. The orbits. The orbital decomposition of this space ($G L(8)$, Λ_{3}, V) was completed by Gurevich (see [4]). A representative point of each orbit is given in Table I.

Table I. Representative points of the orbits and their isotropy subgroups

Numbers	Representative points	Isotropy subgroups
0,56	$123+147+148+257+368+456$	$S L(3)$
1,40	$4\langle 148\rangle-8\langle 157\rangle-2\langle 238\rangle+247$	$(S L(2) \times G L(1)) \cdot\left(G_{a}\right)^{5}$
	$+4\langle 256\rangle-2\langle 346\rangle$	$\left(S L(2) \times G L(1)^{2}\right) \cdot U(6)$
3,31	$138+167+247-256+345$	$G L(1)^{3} \cdot U(9)$
4,25	$136+147+236-258-345$	$\left(S L(2) \times G L(1)^{2}\right) \cdot U(9)$
6,21	$127-156+236-245-348$	$\left(S L(2)^{3} \times G L(1)\right) \cdot\left(G_{a}\right)^{6}$
8,24	$134+156+234+278$	$(S L(2) \times G L(1)) \cdot U(12)$
8,16	$128+147-156-237+246+345$	$\left(S L(2)^{2} \times G L(1)^{2}\right) \cdot U(9)$
9,18	$136-145+234+278$	$\left(S L(2) \times G L(1)^{2}\right) \cdot U(13)$
10,13	$128-137+156-246+345$	$\left(S L(2)^{2} \times G L(1)^{2} \cdot\left(G G_{a} 1^{12}\right.\right.$
12,12	$136+147-235+248$	$(S L(2) \times G L(1)) \cdot U(17)$
13,10	$128-137+146+236-245$	$\left(G_{2} \times G L(1)\right) \cdot\left(G_{a}\right)^{7}$
14,28	$125+136+147+234+567$	$(S L(3) \times S p(2) \times G L(1)) \cdot\left(G_{a}\right)^{4}$
$15,15^{\prime}$	$157+168+234$	$\left(S L(2)^{2} \times G L(1)^{2}\right) \cdot U(15)$
$15^{\prime}, 15$	$127+136+246+345$	$\left(S L(2)^{2} \times G L(1)^{2}\right) \cdot U(16)$
16,8	$128-137+156+234$	$\left(S L(2)^{2} \times G L(1)^{3}\right) \cdot U(17)$
18,9	$127+134-256$	

21,	6	$125+136+147+234$	$\left(S L(3) \times G L(1)^{2}\right) \cdot U(19)$
24,	8	$123+456$	$\left(S L(3)^{2} \times S L(2) \times G L(1)\right) \cdot\left(G_{a}\right)^{12}$
25,	4	$126+135-234$	$\left(S L(3) \times S L(2) \times G L(1)^{2}\right) \cdot U(20)$
28,	14	$125+136+147$	$\left(S p(3) \times G L(1)^{2}\right) \cdot U(13)$
31,	3	$124+135$	$\left(S L(3) \times S p(2) \times G L(1)^{2}\right) \cdot U(19)$
40,	1	123	$(S L(5) \times S L(3) \times G L(1)) \cdot\left(G_{a}\right)^{15}$
56,	0	0	$G L(8)$

Remark 1.1. In Table I, $i j k$ stands for $u_{i} \wedge u_{j} \wedge u_{k}(1 \leq i<j$ $<k \leq 8$).

Remark 1.2. The isotropy subgroup of each orbit is given in Table I up to a local isomorphism. We use the following conventions; for example, $(S L(2) \times G L(1)) \cdot U(12)$ stands for a semi-direct product of the reductive group $S L(2) \times G L(1)$ and a 12 -dimensional unipotent group. G_{a} denotes the one dimensional additive group.

Remark 1.3. In Table II, we list the representative points in
Table II

Numbers in Table I	Numbers in [4]	Representative points in [4]	
0, 56	XXIII	$123+145+246+278+347+368+567$	
1, 40	XXII	$123+145+246+278$	+ $+368+567$
3, 31	XXI	$123+145+278$	+ $+368+567$
4, 25	XX	$145+246+278$	+ $347+368+567$
6, 21	XVIII	$145+246+278$	+ $+368+567$
8, 24	XIX	$145+246+278$	+ $347+368$
8, 16	XV	$123+145+246$	$+347+368+567$
9,18	XVII	$145+246+278$	+368
10, 13	XIV	$123+145+246$	$+368+567$
12, 12	XIII	$123+145$	$+368+567$
13, 10	XII	$145+246$	+347+368+567
14, 28	X	$123+145+246$	+347 +567
15, 15^{\prime}	XVI	$145+278$	+368
$15^{\prime}, 15$	IX	$123+145+246$	+567
16, 8	XI	$145+246$	$+347+368$
18, 9	VIII	$123+145$	+567
21, 6	VII	$145+246$	+347 +567
24, 8	V	123	$+456$
25, 4	IV	$156+246$	+345
28, 14	VI	$145+246$	+347
31, 3	III	$145+246$	
40, 1	II		567
56, 0	I	0	

Fig. 1

Gurevich [4]. Our choice of the representative points in Table I is suitable to obtain the isotropy subgroups in a simple form.

In [4] the eight linearly independent vectors are denoted by a, b, c, p, q, r, s, t. In Table II, however, they are denoted by $1,2,3, \cdots, 8$ according to our convention.

Remark 1.4. Representative points of $(24,8)$ and $(25,4)$ can be taken $123+567$ and $246+347+567$, respectively.
§2. The holonomy diagram. We give the holonomy diagram in Fig. 1. For its definition, see [5].

Remark 2.1. In Fig. 1, we show the following data for each good holonomic variety Λ.
(1) The order $\operatorname{ord}_{A} f^{s}=-m s-n / 2$ of the simple holonomic system $\mathscr{M}_{s}=\mathcal{E} f^{s}$ where \mathcal{E} denotes the sheaf of micro-differential operators.
(2) The intersection exponent ($\mu: \nu$), when it is not indefinite.
(3) The ratio $b_{A^{\prime}}(s) / b_{A}(s)$ of the local b-functions $b_{A^{\prime}}(s)$ and $b_{A}(s)$ when Λ and Λ^{\prime} have a one-codimensional intersection. Those ratios corresponding to the opposite sides of each rectangle are the same.

Remark 2.2. The conormal bundle of the orbit $(14,28)$ or $(28,14)$ is not prehomogeneous.
§3. The b-function. Proposition 3.1. The b-function $b(s)$ of the triplet $\left(G L(8), \Lambda_{3}, V\right)$ is given by

$$
\begin{aligned}
b(s)=(s+1)\left(s+\frac{3}{2}\right)^{2}\left(s+\frac{11}{6}\right)(s+2)^{3}(s+ & \left.\frac{13}{6}\right)\left(s+\frac{7}{3}\right)\left(s+\frac{5}{2}\right)^{3} \\
& \times\left(s+\frac{8}{3}\right)(s+3)^{2}\left(s+\frac{7}{2}\right) .
\end{aligned}
$$

Remark 3.2. We have obtained the above results by the method in [5].

References

[1] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65, 1-155 (1977).
[2] T. Kimura: The holonomy diagrams and the b-functions of irreducible regular prehomogeneous vector spaces (to appear).
[3] I. Ozeki: On the microlocal structure of the regular prehomogeneous vector space associated with $S L(5) \times G L(4)$. I. Proc. Japan Acad., 55A, 37-40 (1979).
[4] G. B. Gurevich: Theory of Algebraic Invariants. P. Noordhoff Ltd.-Groningen, The Netherlands, pp. 390-395 (1964).
[5] M. Sato, M. Kashiwara, T. Kimura, and T. Oshima: Micro-local analysis of prehomogeneous vector spaces (to appear).
[6] I. Ozeki: The holonomy diagrams of certain prehomogeneous vector spaces. Kokyuroku RIMS, Kyoto Univ., no. 266, pp. 236-258 (1976) (in Japanese).
[7] T. Kimura and M. Muro: On some series of regular irreducible prehomogeneous vector spaces. Proc. Japan Acad., 55A, 384-389 (1979).

