2. The First Eigenvalues of an Operator Related to Selection in Population Genetics

By Norio Shimakura
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1980)

1. Introduction. Among the diffusion approximations of 2-allelic gene frequency models in population genetics, one of the simplest is described by the Kolmogorov equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{x(1-x)}{4 N} \frac{\partial^{2} u}{\partial x^{2}}+s x(1-x) \frac{\partial u}{\partial x} . \tag{1}
\end{equation*}
$$

Here we are taking account only of the selection force. x is the space variable running over the interval $0 \leq x \leq 1 . x$ and $1-x$ denote genetically the gene frequencies of 2 allels, say A and A^{\prime} respectively. t is, genetically the generation, time variable running over the positive real line. $2 N$ and s are independent of $(t, x) .2 N$ (population size) is a large positive integer, and s is a real number ($|s|$ is small). $1+s$ and 1 are relative fitnesses of A and A^{\prime} respectively. Hence, A is advantageous to A^{\prime} if $s \geq 0$, and contrarily if $s \leq 0$.

The stochastic process $x(t, \omega)$ starting from $0<x(0, \omega)<1$ reaches almost surely in a finite time to one of the boundary points $x=0$ or $x=1$. If we consider the eigenvalue problem

$$
\left\{\begin{array}{l}
\frac{x(1-x)}{4 N} \frac{d^{2} u}{d x^{2}}+s x(1-x) \frac{d u}{d x}+\mu u=0, \quad \text { in } 0<x<1, \tag{2}\\
u(0)=u(1)=0
\end{array}\right.
$$

the first eigenvalue μ_{1} is the rate of the absorption to the boundary (see [2] and [3]).

Hence it is of interest to know the magnitude of μ_{1} as a function of $2 N$ and s. If we change the parameters $(2 N, s)$ by

$$
\begin{equation*}
4 N s=\sigma \quad \text { and } \quad 4 N \mu=\lambda, \tag{3}
\end{equation*}
$$

(2) becomes an equation for spheroidal wave functions ([1])

$$
\begin{equation*}
x(1-x) \frac{d^{2} u}{d x^{2}}+\sigma x(1-x) \frac{d u}{d x}+\lambda u=0, \quad \text { in } 0<x<1, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u(1)=0 . \tag{5}
\end{equation*}
$$

In this note, we will estimate $\mu_{1}=\mu_{1}(2 N, s)=\lambda_{1}(4 N s) /(4 N)$ as $4 N s$ is large. But the method being the same, we will treat the first $2 m$ eigenvalues $\left\{\lambda_{p}(\sigma)\right\}_{p=1}^{2 m}$ of (4)-(5), supposing that σ is large (m is arbitrary but fixed). The result will be stated in § 3 .
2. Gene frequency model. The original model corresponding
to (1) is a Markov chain $\left\{X_{k}\right\}_{k=0}^{\infty}$ whose state space is the finite set $\Omega^{(2 N)}$ $=\{0,1,2, \cdots, 2 N\}$ and the set of times (generations) k is the discrete set $\{0,1,2, \cdots\}$. And the one-step transition probability is given by

$$
P_{i j}^{(2 N)}=\operatorname{Prob}\left[X_{k+1}=j \mid X_{k}=i\right]=\binom{2 N}{j} p_{i}^{j}\left(1-p_{i}\right)^{2 N-j}
$$

with $p_{i}=(1+s) i /(2 N+s i)$, where $i, j \in \Omega^{(2 N)}$ and $k=0,1,2, \cdots$ (see [2]). In the approximation procedure as $2 N$ is large, we identify $i \in \Omega^{(2 N)}$ with the point $x^{i}=i / 2 N$ in the interval $0 \leq x \leq 1$, and assume that $4 N s$ $=\sigma$ is independent of $2 N$. Then we have

$$
p_{i}=x^{i}+\frac{\sigma}{4 N} x^{i}\left(1-x^{i}\right)+O\left((2 N)^{-2}\right)
$$

uniformly on $\Omega^{(2 N)}$. And the Markov chain $\left\{X_{k}\right\}$ is approximated by the Markov process $\{x(t, \omega)\}$ whose Kolmogorov equation is (1) with $s=\sigma / 4 N$ (see [4]). Here the scales of t and k are the same. It should be noticed that this diffusion approximation is no more correct if $4 N s$ is too large (for example if s is a non-zero value independent of $2 N$).
3. Statement of a result. Put $w(x)=e^{\sigma x / 2} u(x)$. Then the equation (4) becomes

$$
\begin{equation*}
B w(x)=x(1-x)\left\{-w^{\prime \prime}(x)+\frac{\sigma^{2}}{4} w(x)\right\}=\lambda w(x) . \tag{6}
\end{equation*}
$$

Under the boundary condition (5), B is extended to a positive selfadjoint operator in the Hilbert space H obtained by completing $C_{0}^{\infty}(0,1)$ by the scalar product

$$
(u, v)_{H}=\int_{0}^{1} u(x) \overline{v(x)}\{x(1-x)\}^{-1} d x .
$$

We see from this setting that each of the eigenvalues λ is simple and is an increasing function of σ^{2}, and that the boundary point $x=0$ has the same character as $x=1$. Let us enumerate the eigenvalues of (4)-(5) in increasing order of magnitude : $0<\lambda_{1}(\sigma)<\lambda_{2}(\sigma)<\cdots$. Then we have the following

Theorem. Let m be any fixed positive integer. Then, $\left\{\lambda_{p}(\sigma)\right\}_{p=1}^{2 m}$ behaves in the following manner as $\sigma \rightarrow+\infty$:

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow+\infty}\left\{\lambda_{p}(\sigma)-\left[\frac{p+1}{2}\right] \sigma\right\} \leqq 0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty}\left\{\lambda_{p}(\sigma) / \sigma\right\}=\left[\frac{p+1}{2}\right], \tag{8}
\end{equation*}
$$

where $[(p+1) / 2]$ is $(p+1) / 2$ if p is odd and $p / 2$ if p is even.
4. Preliminaries for the proof. Equation (6) is written as

$$
\begin{equation*}
L w(x) \equiv-w^{\prime \prime}(x)+\frac{\sigma^{2}}{4} w(x)=\frac{\lambda}{x(1-x)} w(x) \tag{9}
\end{equation*}
$$

Let $a(x)$ and $b(x)$ be any continuous functions satisfying

$$
\begin{equation*}
0<b(x) \leq x(1-x) \leq a(x), \quad \text { in } 0<x<1 \tag{10}
\end{equation*}
$$

We can compare (9) with the equations

$$
\begin{align*}
& L w(x)=\{\lambda / a(x)\} w(x), \tag{11}\\
& L w(x)=\{\lambda / b(x)\} w(x) . \tag{12}
\end{align*}
$$

Let us denote by $\left\{\bar{\lambda}_{p}(\sigma)\right\}_{p=1}^{\infty}$ and $\left\{\underline{\lambda}_{p}(\sigma)\right\}_{p=1}^{\infty}$ the sequencies of eigenvalues of (11)-(5) and (12)-(5) respectively enumerated in increasing order. Then the mini-max principle implies

$$
\begin{equation*}
\underline{\lambda}_{p}(\sigma) \leq \lambda_{p}(\sigma) \leq \bar{\lambda}_{p}(\sigma), \quad \text { for each } p \tag{13}
\end{equation*}
$$

Therefore an appropriate choice of $a(x)$ or of $b(x)$ will help us to estimate $\lambda_{p}(\sigma)$'s from above or from below.

The p-th eigenfunction of (9)-(5) is an even (odd) function of x^{\prime} $=x-1 / 2$ if p is odd (even respectively). This remains also true for the eigenfunctions of (11)-(5) and (12)-(5) if $a(x)$ and $b(x)$ are even functions of x^{\prime}. Hence we can look for even eigenfunctions and odd ones separately.

On the other hand, if x is small, the factor $1-x$ in (4) is nearly 1. Therefore we consider a simpler equation

$$
\begin{equation*}
u^{\prime \prime}(z)=u^{\prime}(z)+(\kappa / z) u(z) \tag{14}
\end{equation*}
$$

The following series is a solution of (14) vanishing at $z=0$:

$$
\begin{equation*}
F(\kappa, z)=\sum_{n=0}^{\infty}\binom{\kappa+n}{n} \frac{z^{n+1}}{(n+1)!} \tag{15}
\end{equation*}
$$

5. Proof of (7). Let us consider the problem (11)-(5) with

$$
\begin{equation*}
a(x)=\operatorname{Min}(x, 1-x) \quad \text { in } 0 \leq x \leq 1 . \tag{16}
\end{equation*}
$$

Let us define $w_{1}(x)$ and $w_{2}(x)$ by

$$
\left\{\begin{array}{l}
w_{1}(x)=w_{2}(x)=w_{0}(x) \quad \text { in } 0 \leq x \leq 1 / 2, \text { and } \tag{17}\\
w_{1}(x)=-w_{2}(x)=w_{0}(1-x) \quad \text { in } 1 / 2<x \leqq 1, \\
\text { where } w_{0}(x)=e^{-\sigma x / 2} F(-\lambda / \sigma, \sigma x) .
\end{array}\right.
$$

$w_{1}(x)\left(w_{2}(x)\right)$ is an eigenfunction of (11)-(5) if and only if $w_{1}^{\prime}(1 / 2 \pm 0)=0$ ($\left.w_{2}(1 / 2 \pm 0)=0\right)$. This condition is equivalent to

$$
\begin{gather*}
F(-\lambda / \sigma, \sigma / 2)=2 F^{\prime}(-\lambda / \sigma, \sigma / 2) \tag{18}\\
(F(-\lambda / \sigma, \sigma / 2)=0 \text { respectively, }) \tag{19}
\end{gather*}
$$

where $F^{\prime}(\kappa, z)=(\partial F / \partial z)(\kappa, z)$. Therefore, it suffices to investigate the position of real roots κ of the equation

$$
\begin{equation*}
F(\kappa, z)=\theta F^{\prime}(\kappa, z), \quad \text { where } \theta \text { is } 2 \text { or } 0 . \tag{20}
\end{equation*}
$$

We see that, for any fixed positive integer m and for sufficiently large z, there are exactly m roots $\left\{\kappa_{p}(\theta, z)\right\}_{p=1}^{m}$ in the interval $-m-1 / 2 \leq \kappa$ $\leq m+1 / 2$, and that each of $\left|\kappa_{p}(\theta, z)+p\right|$ decays exponentially as $z \rightarrow+\infty$. Since $\bar{\lambda}_{2 p-1}(\sigma)=-\sigma \kappa_{p}(2, \sigma / 2)$ and $\bar{\lambda}_{2 p}(\sigma)=-\sigma \kappa_{p}(0, \sigma / 2)$ for $1 \leq p \leq m$, we have proved (7).
6. Proof of (8). We proceed to the problem (12)-(5), where

$$
\begin{equation*}
b(x)=\operatorname{Min}\{\alpha x, \alpha \beta, \alpha(1-x)\}, \quad \text { in } 0 \leq x \leq 1 \tag{21}
\end{equation*}
$$

The inequality (10) holds if the constants α and β satisfy $0<\alpha<1,0<\beta$ $<1 / 2$ and $\alpha+\beta \leq 1$. Similarly to (17), we put

$$
\left\{\begin{array}{l}
v_{0}(x)=e^{-\sigma x / 2} F\left(-\frac{\lambda}{\alpha \sigma}, \sigma x\right) \tag{22}\\
v_{1}(x)=\cosh \left\{\mu\left(\frac{1}{2}-x\right)\right\} \quad \text { and } \quad v_{2}(x)=\sinh \left\{\mu\left(\frac{1}{2}-x\right)\right\}
\end{array}\right.
$$

where $\mu=\left\{\left(\sigma^{2} / 4\right)-(\lambda /(\alpha \beta))\right\}^{1 / 2}$. And define $W_{1}(x)$ and $W_{2}(x)$ by

$$
\left\{\begin{array}{l}
W_{1}(x)=W_{2}(x)=v_{0}(x) \quad \text { in } 0 \leq x<\beta, \tag{23}\\
W_{j}(x)=A_{j} v_{j}(x) \quad \text { in } \beta<x<1-\beta, j=1,2, \\
W_{1}(x)=-W_{2}(x)=v_{0}(1-x) \quad \text { in } 1-\beta<x \leq 1 .
\end{array}\right.
$$

$W_{j}(x)$ is an eigenfunction of (12)-(5) if and only if $W_{j}(\beta+0)=W_{j}(\beta-0)$ and $W_{j}^{\prime}(\beta+0)=W_{j}^{\prime}(\beta-0)$ with some constant A_{j}, that is,

$$
\begin{equation*}
F^{\prime}\left(-\frac{\lambda}{\alpha \sigma}, \alpha \beta\right)=F\left(-\frac{\lambda}{\alpha \sigma}, \sigma \beta\right)\left[\frac{1}{2}-\frac{\mu}{\sigma} \tanh \left\{\mu\left(\frac{1}{2}-\beta\right)\right\}\right] \tag{24}
\end{equation*}
$$

if $j=1$ (we replace tanh by coth if $j=2$). Let us take a large positive M independent of σ, put $\alpha=1-M / \sigma$ and $\beta=M / \sigma$, and assume that σ / M is large. We regard (24) as an equation in $\kappa=-\lambda /(\alpha \sigma)$. Then, there are exactly m roots $\left\{\kappa_{2 p-1}^{\prime}(\sigma)\right\}_{p=1}^{m}$ for $j=1$ and m roots $\left\{\kappa_{2 p}^{\prime}(\sigma)\right\}_{p=1}^{m}$ for $j=2$ in the interval $-m-1 / 2 \leq \kappa \leq m+1 / 2$. Moreover, taking both of M and σ / M large enough, $\left|\kappa_{2 p-1}^{\prime}(\sigma)+p\right|$ and $\left|\kappa_{2 p}^{\prime}(\sigma)+p\right|$ can be made arbitrarily small. Since $\underline{\lambda}_{q}(\sigma)=(M-\sigma) \kappa_{q}^{\prime}(\sigma)$, we have

$$
\varliminf_{\sigma \rightarrow+\infty} \lambda_{q}(\sigma) / \sigma \geq\left[\frac{q+1}{2}\right] \quad \text { for } 1 \leq q \leq 2 m
$$

Combining this with (7), we have (8). Theorem is now established.
7. An improvement of the result. A better upper bound for $\lambda_{1}(\sigma)$ and $\lambda_{2}(\sigma)$ is obtained in the following way. We put

$$
R(w)=(B w, w)_{H} /(w, w)_{H}
$$

(see the context of (6)). Then we have $\lambda_{1}(\sigma) \leq R\left(w_{\rho}\right)$ and $\lambda_{2}(\sigma) \leq R\left(v_{\rho}\right)$, where $w_{\rho}(x)=x(1-x) \cosh \{\rho(x-1 / 2)\}, v_{\rho}(x)=x(1-x) \sinh \{\rho(x-1 / 2)\}$ and ρ is a positive parameter. Computing the minima of $R\left(w_{\rho}\right)$ and $R\left(v_{\rho}\right)$ as functions of ρ, we have the following bound for $\lambda_{1}(\sigma)$ and $\lambda_{2}(\sigma)$ as σ is large :

$$
\begin{equation*}
\lambda_{1}(\sigma) \quad \text { and } \quad \lambda_{2}(\sigma) \leq \sigma-2-4 \sigma^{-1}-24 \sigma^{-2}-O\left(\sigma^{-3}\right) \tag{25}
\end{equation*}
$$

8. A multi-dimensional analogue. For the d-allelic ($d \geq 3$) gene frequency model analogous to (1), the reduced eigenvalue problem corresponding to (4)-(5) is the following:

$$
\left\{\begin{array}{l}
\sum_{j, k=1}^{n}\left(\delta_{j k} x_{j}-x_{j} x_{k}\right)\left(\frac{\partial^{2} u}{\partial x_{j} \partial x_{k}}+\sigma_{j} \frac{\partial u}{\partial x_{k}}\right)+\lambda u=0, \text { in } \Omega, \tag{26}\\
u(x)=0, \text { on } \partial \Omega .
\end{array}\right.
$$

Here $n=d-1, \sigma=\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)$ are real constants and Ω is the n-simplex in \boldsymbol{R}^{n} defined by $x_{j}>0,1 \leq j \leq n$, and $\sum_{j=1}^{n} x_{j}<1$. Let $\lambda_{1}(\sigma)$ be the first eigenvalue of this problem. If $|\sigma|$ tends to infinity keeping the ratio $\sigma_{1}: \sigma_{2}: \cdots: \sigma_{n}$ fixed, the following inequality holds

$$
\begin{equation*}
C \leq \lambda_{1}(\sigma) / \operatorname{Min}_{1 \leq j \leq d} \sum_{k=1}^{d}\left|\sigma_{j}-\sigma_{k}\right| \leq 1+o(1), \quad \text { with } \sigma_{d}=0 \tag{27}
\end{equation*}
$$

where C is a positive constant depending only on d.

References

[1] Erdélyi, A. et al.: Higher Transcendental Functions. Vol. 3, chap. XVI, McGraw-Hill (1955).
[2] Karlin, S.: A First Course in Stochastic Processes. Chap. 13, Academic Press (1966).
[3] Maruyama, T.: Stochastic Problems in Population Genetics. Lect. Notes in Biomath., vol. 17, Springer (1977).
[4] Sato, K.: A class of Markov chains related to selection in population genetics. J. Math. Soc. Japan, 28(4), 621-637 (1976).

