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1o Introduction. Amonghe diffusion approximations o 2-allelic
gene frequency models in population genetics, one o the simplest is
described by the Kolmogorov equation

( 1 ) u x(1 x) ff__u + sx (1 x) u
3t 4N 3x 3x

Here we are taking account only o the selection orce. x is the space
variable running over the interval 0_x

_
1. x and 1- x denote geneti-

cally the gene requencies o 2 allels, say A and A’ respectively, t is,
genetically the generation, time variable running over the positive real
line. 2N and s are independent o (t, x). 2N (population size) is a large
positive integer, and s is a real number (Is] is small), l+s and 1 are
relative fitnesses o2 A and A’ respectively. Hence, A is advantageous
to A’ if s>_0, and contrarily if s_0.

The stochastic process x(t, o) starting from 0x(0, w) 1 reaches
almost surely in a finite time to one of the boundary points x-0 or
x-1. If we consider the eigenvalue problem

x(1-- x) du -t- sx(1- x) du +[u O, in 0 x 1,
( 2 ) 4N dx dx

u(0)=u(1) 0,
the first eigenvalue/ is the rate of the absorption to the boundary
(see [2] and [3]).

Hence it is o interest to know the magnitude of Z as a unction
o2 2N and s. I we change the parameters (2N, s) by
(3) 4Ns=a and 4N/=,
(2) becomes an equation for spheroidal wave unctions ([1])

d2 x) du( 4 ) x(1 x) au +ax(1-- + 2u 0, in 0 x 1
clx

5 ) u(0) u(1) 0.

In this note, we will estimate Z Z(2N, s) =,(4Ns)/(4N) as 4Ns is large.
But the method being the same, we will treat the first 2m eigenvalues

2m{()}__ o (4)-(5), supposing that is large (m is arbitrary but fixed).
The result will be stated in 3.

2. Gene frequency model. The original model corresponding
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to (1) is a Markov chain {X}_-0 whose state space is the finite set
--{0, 1, 2, ..., 2N} and the set of times (generations) k is the discrete
set {0, 1, 2,...}. And the one-step transition probability is given by

P Prob [X i]=()p(1-p)-ij +1]X

with p=(l+s)i/(2N+si), where i,] e 9() and k=0, 1,2, (see [2]).
In the approximation procedure as 2N is large, we identify i e
with the point x=i/2N in the interval 0gxl, and assume that 4Ns
=a is independent of 2N. Then we have

p=x+ a _x(1 x) + O((2N)_)
4N

uniformly on 9(). And the Markov chain {X} is approximated by
the Markov process {x(t, w)} whose Kolmogorov equation is (1) with

s=a/4N (see [4]). Here the scales o t and k are the same. It should
be noticed that this diffusion approximation is no more correct if 4Ns
is too large (for example i s is a non-zero value independent of 2N).. Statement of a result. Put w(x)= e/u(x). Then the equation
(4) becomes

(6) Bw(x)=x(1-x){--w"(x)+ w(x)}=w(x).4
Under the boundary condition (5), B is extended to a positive self-
adjoint operator in the Hilbert space H obtained by completing C(0, 1)
by the scalar product

(u, v)=I: u(x)v(x){x(1-x)}-dx.

We see rom this setting that each o the eigenvalues is simple and
is an increasing unction of a, and that the boundary point x 0 has the
same character as x= 1. Let us enumerate the eigenvalues of (4)-(5)
in increasing order o magnitude" 0<(a)<1(a)<. Then we have
the ollowing

Theorem. Let m be any fixed positive integer. Then, {(a)}
behaves in the following manner as a+
(7) lim

where [(p+l)/2] is (p+l)/2 if p is odd and p/2 if p is even.
4. Preliminaries for the proof. Equation (6) is written as

w(x).( 9 ) Lw(x)-- w"(x) + w(x)
x(1- x)

Let a(x) and b(x) be any continuous functions satisfying
(10) Ob(x)gx(1-x)a(x), in 0xl.
We can compare (9) with the equations
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(11) Lw(x)-- {/a(x)}w(x)
(12) Lw(x) {,/ b(x)}w(x).
Let us denote by {(z)} and {_(z)}__ the sequencies of eigenvalues
of (11)-(5) and (12)-(5) respectively enumerated in increasing order.
Then the mini-max principle implies

(13) _2(a)_2(a)_(a), for each p.

Therefore an appropriate choice of a(x) or of b(x) will help us to esti-
mate (a)’s from above or from below.

The p-th eigenfunction of (9)-(5) is an even (odd) function of
--x-1/2 if p is odd (even respectively). This remains also true for
the eigenfunctions of (11)-(5) and (12)-(5) if a(x) and b(x) are even
functions of x’. Hence we can look for even eigenfunctions and odd
ones separately.

On the other hand, if x is small, the factor 1-x in (4) is nearly 1.
Therefore we consider a simpler equation

(14) u"(z)=u’(z)+(/z)u(z).
The following series is a solution of (14) vanishing at z=0"

(15) F(, z)- n z___.
(n+l). Proof of (7). Let us consider the problem (11)-(5) with

(16) a(x) Min (x, 1- x) in 0_x

_
1.

Let us define w(x) and w.(x) by

w(x)=w(x)=Wo(X) in 0_x_l/2, and
(17) w(x)=-w(x)=Wo(1-x) in

[where Wo(X) e-/F( /a, ax).
w(x) (w.(x)) is an eigenunction of (11)-(5) i2 and only if w(1/2+__O)=O
(w(1/2_+0)-0). This condition is equivalent to
(18) F(-/a, a/2)=2r’(-/a, a/2)
(19) (F(- /a, a/2)--O respectively,)

where F’(,z)=(3,F/3z)(,z). Therefore, it suffices to investigate the
position o real roots of the equation

(20) F(, z)=tF’(r, z), where t is 2 or 0.

We see that, for any fixed positive integer m and for sufficiently large
z, there are exactly m roots {(t,z)}= in the interval --m--1/2_
<:m-t- 1/2, and that each of (t, z)+pl decays exponentially as
Since _(a)=-a(2, a/2) and (a)=-a(O,a/2) for l_p_m, we
have proved (7).

5. Proof of (8). We proceed to the problem (12)-(5), where
(21) b(x)=Min {ax, aft, a(1-x)}, in 0x_l.
The inequality (10) holds if the constants a and satisfy 0al,0
1/2 and a+fl_l. Similarly to (17), we put
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(22)
V(X) cosh Z x and v(x) sinh / -x

where/= {(a2/4)-(,/(afl))}/2. And define W(x) and W2(x) by
W(x) W(x)=Vo(X) in

(23) W(x)=Av(x) in flxl-fl, ]=1,2,
W(x)=-W(x)=Vo(1-x) in 1-flxgl.

W(x) is an eigenfunction o (12)-(5) i and only if W(fl+0)= W(-0)
and W(fl+0)= W(fl-0) with some constant A, that is,

()()[1 tanh (Z(_fl)}](24) F’ 2 ,aft =F 2 ,aft --a
i ]= 1 (we replace tanh by coth if ]= 2). Let us take a large positive
M independent of a, put a= 1-M/a and fl=M/a, and assume that aIM
is large. We regard (24) as an equation in =-/(aa). Then, there

or ]=1 and m rootsare exactly m roots
] 2 in the interval m- 1/2g m+ 1/ 2. Moreover, taking both
M and a/M large enough, [’s_(a).p[ and ](a) +p] can be made
arbitrarily small. Since q(a)=(M--a)(a), we have

lim 2(e)/e>[ q+l] for l<q<2m.

Combining this with (7), we have (8). Theorem is now established.
7. An improvement of the result. A better upper bound for

2(a) and 2(a) is obtained in the ollowing way. We put
R(w) (Bw, w),/ (w,

(see the context of (6)). Then we have (a)gR(w,) and 2(a) gR(v,),
where w,(x) x(1-x) cosh {p(x-1/2)}, v,(x) x(1--x) sinh (p(x-1/2)}
and p is a positive parameter. Computing the minima of R(w,) and
R(v,) as functions o p, we have the following bound for 2(a) and 2(a)
as a is large"
(25) 2(a) and 2(a)ga-2-4a--24a--O(a-).

8. A multi.dimensional analogue. For the d-allelic (d3) gene
requency model analogous to (1), the reduced eigenvalue problem
corresponding to (4)-(5) is the following"

(-zz) 0 -+e +2=0 in D,

[(z)=0, on 09.
Here=g-- 1, (e, e, ., e) are real eonstans and D is the -simlex
in R defined by >0, 1N, and <1. Le 2() be he
eigenvalue of his roblem. If el ends o infinity keeing he ratio
e" e" fixed, he following inequality holds

(27) C2(e)/in le-ll+o(1), with ea=0,
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where C is a positive constant depending only on d.
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