19. On the Group of Units of a Non-Galois Quartic or Sextic Number Field

By Ken Nakamula
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. a., Feb. 12, 1980)

All number fields we consider are in the complex number field. The symbol $\langle S\rangle$ denotes a multiplicative group generated by S.

For a finite extension k / \boldsymbol{Q}, let E_{k} be the group of units of k, and E_{k}^{\prime} be the group generated by all units of proper subfields of k together with roots of unity in k. We define the group H_{k} of relative units of k by
$H_{k}=\left\{\varepsilon \in E_{k} \mid N_{k / k^{\prime}}(\varepsilon)\right.$ is a root of unity for a proper subfield k^{\prime} of $\left.k\right\}$.
Let us consider the problem to construct E_{k} with the help of E_{k}^{\prime}. It is interesting to utilize H_{k} together with E_{k}^{\prime} when $\left(E_{k}: E_{k}^{\prime}\right)=+\infty$. Hasse [2] has treated such a case when k is a real cyclic quartic number field. We are going to treat the case when k is a non-galois quartic (resp. sextic) number field having a quadratic subfield (resp. a quadratic and a cubic subfields). Then the galois closure of k / \boldsymbol{Q} is a dihedral extension of degree 8 or 12 over \boldsymbol{Q}. We restrict our investigation on such extensions.

From now on, we assume $n=2$ or 3 . Let L / \boldsymbol{Q} be a galois extension of degree $4 n$ with the galois group

$$
G=\langle\sigma, \tau\rangle ; \quad \sigma^{2 n}=\tau^{2}=(\sigma \tau)^{2}=1
$$

The invariant subfield of the subgroup $\langle\tau\rangle$ (resp. $\left\langle\sigma^{3} \tau\right\rangle,\left\langle\sigma^{n}\right\rangle$) is denoted by K (resp. F, Ω), and the maximal abelian subfield by Λ. Then K and F are non-galois number fields of degree $2 n$ which we are going to study. The quadratic subfield of K (resp. F) is denoted by K_{2} (resp. F_{2}). When $n=3$, the cubic subfield of both K and F is denoted by K_{3}. The quartic field Λ is the composite field of K_{2} and F_{2} which contains another quadratic subfield Λ_{2}. Note that $\Lambda=\Omega$ when $n=2$.

It is easy to show the following, which is in Nagell [6] when $n=2$.
Proposition 1. When $L \cap R=\Omega$, we have $E_{K}=E_{K}^{\prime}$ and $E_{F}=E_{F}^{\prime}$.
Therefore we treat the two cases:
Case I: $L \cap R=K$. Case II: $L \subset \boldsymbol{R}$.
Taking into account that all roots of unity of L is contained in the quartic subfield Λ, we take and fix a generator ω (resp. ζ, ρ) of the group of roots of unity of Λ (resp. Λ_{2}, F_{2}).

1. Type of \boldsymbol{E}_{K} and \boldsymbol{E}_{F}. A typical example of K and F are a pure number field of degree $2 n$. The method, which is used in Stender [8],
[9], [10] in such cases, to determine fundamental units of K and F is based on the following easy lemma of group theory:

Let E be a free abelian group of rank r, and E_{i} be m subgroups of rank $r_{i}(1 \leq i \leq m)$. Assume that there are m natural numbers n_{i} and m homomorphisms $f_{i}: E \rightarrow E_{i}$ which satisfy $f_{i}(x)=x^{n_{i}}$ for $x \in E_{i}$ and $f_{i}(x)=1$ for $x \in E_{j}(j \neq i)$. Then $\left\langle E_{1}, \cdots, E_{m}\right\rangle=E_{1} \times \cdots \times E_{m}$ (direct product). Thus we put $f:=f_{1} \times \cdots \times f_{m}, H:=\operatorname{Ker}(f)=\left\{x \in E \mid f_{i}(x)\right.$ $=1(1 \leq i \leq m)\}$ and $r_{0}:=\operatorname{rank}(H)$. Then we have

Lemma 1. (i) The group $\left\langle H, E_{1} \times \cdots \times E_{m}\right\rangle=H \times E_{1} \times \cdots \times E_{m}$. (ii) The image $f(E)$ contains $E_{1}^{n_{1}} \times \cdots \times E_{m}^{n_{m}}$ and the inverse image $f^{-1}\left(E_{1}^{n_{1}} \times \cdots \times E_{m}^{n_{m}}\right)=H \times E_{1} \times \cdots \times E_{m} . \quad$ Therefore $r=r_{0}+r_{1}+\cdots+r_{m}$, and the index $\left(E: H \times E_{1} \times \cdots \times E_{m}\right)$ divides $n_{1}^{r_{1}} \cdots n_{m}^{r_{m}}$. (iii) If $n_{i}(1 \leq i$ $\leq m)$ are pairwise relatively prime, a basis $\left\{y_{i}\right\}_{i=1}^{s}\left(s:=r-r_{0}\right)$ of $f(E)$ can be chosen so that $y_{1}, \cdots, y_{r_{1}} \in E_{1} ; y_{r_{1+1}}, \cdots, y_{r_{1}+r_{2}} \in E_{2} ; \cdots ; y_{s-r_{m}+1}$, $\cdots, y_{s} \in E_{m}$.

In Lemma 1, if we regard E as $E_{K} /\langle-1\rangle\left(\right.$ resp. $\left.E_{F} /\langle\rho\rangle\right)$ and E_{i} as the groups of units of maximal proper subfields of K (resp. F) modulo roots of unity, then the relative norm maps from K (resp. F) satisfy the condition of f_{i}, and then H can be regarded as $H_{K} /\langle-1\rangle$ (resp. $H_{F} /\langle\rho\rangle$). Hence we have

Corollary 1 (Nagell [6]). Let $n=2$. (i) In Case I, let $E_{K_{2}}=\langle-1$, $\left.\eta_{2}\right\rangle$ with $\eta_{2}>1, H_{K}=\left\langle-1, \varepsilon_{1}\right\rangle$ with $\varepsilon_{1}>1$, and let $H_{F}\left(=E_{F}\right)=\left\langle\rho, \varepsilon_{0}\right\rangle$. Then $E_{K}=\left\langle-1, \varepsilon_{1}, \varepsilon_{2}\right\rangle$, where
$\varepsilon_{2}=\eta_{2}$ if $\pm \eta_{2} \oplus N_{K / K_{2}}\left(E_{K}\right), \varepsilon_{2}=\sqrt{\eta_{2}}$ or $\sqrt{\varepsilon_{1} \eta_{2}}$ otherwise.
(ii) In Case II, let $E_{K_{2}}=\left\langle-1, \eta_{2}\right\rangle$ with $\eta_{2}>1$, and $H_{K}=\left\langle-1, \varepsilon_{0}, \varepsilon_{1}\right\rangle$ with $\varepsilon_{0}>1$ and $\varepsilon_{1}>1$. Then $E_{K}=\left\langle-1, \varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\right\rangle$, where
$\varepsilon_{2}=\eta_{2}$ if $\pm \eta_{2} \oplus N_{K / K_{2}}\left(E_{K}\right)$, and $\varepsilon_{2}=\sqrt{\varepsilon_{0}^{\mu} \varepsilon_{1}^{\nu} \eta_{2}}(\mu, \nu=0$ or 1$)$ otherwise.
Corollary 2. Let $n=3$. (i) In Case I, let $E_{K_{2}}=\left\langle-1, \eta_{2}\right\rangle$ with $\eta_{2}>1$, $E_{K_{3}}=\left\langle-1, \eta_{3}\right\rangle$ with $\eta_{3}>1, H_{K}=\left\langle-1, \varepsilon_{1}\right\rangle$ with $\varepsilon_{1}>1$, and let $H_{F}=\left\langle\rho, \varepsilon_{0}\right\rangle$. Then $E_{K}=\left\langle-1, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle$ and $E_{F}=\left\langle\rho, \varepsilon_{0}, \varepsilon_{3}^{\prime}\right\rangle$, where $\varepsilon_{2}, \varepsilon_{3}$ and ε_{3}^{\prime} are given by:
$\varepsilon_{2}=\eta_{2}$ if $\eta_{2} \notin N_{K / K_{2}}\left(E_{K}\right)$, and $\varepsilon_{2}=\sqrt[3]{\eta_{2}}$ or $\sqrt[3]{\varepsilon_{1} \eta_{2}^{ \pm 1}}$ otherwise;
$\varepsilon_{3}=\eta_{3}$ if $\eta_{3} \notin N_{K / K_{3}}\left(E_{K}\right)$, and $\varepsilon_{3}=\sqrt{\eta_{3}}$ or $\sqrt{\varepsilon_{1} \eta_{3}}$ otherwise;
$\varepsilon_{3}^{\prime}=\eta_{3}$ if $\eta_{3} \notin N_{F / K_{3}}\left(E_{F}\right)$, and $\varepsilon_{3}^{\prime}=\sqrt{\rho^{\mu} \varepsilon_{0}^{\nu} \eta_{3}}\left(\mu, \nu=0\right.$ or $\left.1, \mu^{2}+\nu^{2} \neq 0\right)$ otherwise.
(ii) In Case II, let $E_{K_{2}}=\left\langle-1, \eta_{2}\right\rangle$ with $\left.\eta_{2}\right\rangle 1, E_{K_{3}}=\left\langle-1, \eta_{3}, \eta_{4}\right\rangle$ with $\eta_{3}>1, \eta_{4}>1$, and let $H_{K}=\left\langle-1, \varepsilon_{0}, \varepsilon_{1}\right\rangle$ with $\varepsilon_{0}>1, \varepsilon_{1}>1$. Then $E_{K}=\langle-1$, $\left.\varepsilon_{0}, \varepsilon_{1} \cdots, \varepsilon_{4}\right\rangle$, where $\varepsilon_{i}(i=2,3,4)$ are given by :
$\varepsilon_{2}=\eta_{2}$ if $\eta_{2} \notin N_{K / K_{2}}\left(E_{K}\right)$, and $\varepsilon_{2}=\sqrt[3]{\varepsilon_{0}^{\mu} \varepsilon_{1}^{\nu} \eta_{2}}(\mu, \nu= \pm 1$ or 0$)$ otherwise;
$\varepsilon_{3}=\eta_{3}$ if $\pm \eta_{3} \notin N_{K / K_{3}}\left(E_{K}\right)$, and $\varepsilon_{3}=\sqrt{\varepsilon_{0}^{\mu} \varepsilon_{1}^{\nu} \eta_{3}}(\mu, \nu=0$ or 1$)$ otherwise;
$\varepsilon_{4}=\eta_{4}$ if $\pm \eta_{4}, \pm \eta_{3} \eta_{4} \notin N_{K / K_{3}}\left(E_{K}\right)$, and $\varepsilon_{4}=\sqrt{\varepsilon_{0}^{\mu} \varepsilon_{1}^{\nu} \eta_{3}^{2} \eta_{4}}(\mu, \nu, \lambda=0$ or 1$)$ otherwise.
2. Minkowski unit. In order to investigate the relation between E_{K} and E_{F}, the following group homomorphisms are useful when $n=\mathbf{2}$ (resp. 3) :

$$
\begin{aligned}
& \varphi: K^{\times} \rightarrow F^{\times} ; \varphi(x):=x^{1+\sigma}\left(\text { resp. } x^{\sigma+\sigma^{2}}\right), \\
& \psi: F^{\times} \rightarrow K^{\times} ; \psi(y):=y^{1+\sigma^{3}}\left(\text { resp. } y^{\sigma+\sigma^{2}}\right) .
\end{aligned}
$$

Then it is easy to see
Lemma 2. (i) $\varphi\left(H_{K}\right) \subset H_{F}$ and $\psi\left(H_{F}\right) \subset H_{K}$.
(ii) When $n=2$ (resp. 3),
$\psi \circ \varphi(x)=x^{2} N_{K / K_{2}}(x)^{\sigma}\left(\right.$ resp. $\left.x^{-3} N_{K / K_{2}}(x) N_{K / K_{3}}\left(x^{2}\right)\right)$ for $x \in K^{\times}$,
$\varphi \circ \psi(y)=y^{2} N_{F / F_{2}}(y)^{\sigma}\left(\right.$ resp. $\left.y^{-3} N_{F / F_{2}}(y) N_{F / K_{3}}\left(y^{2}\right)\right)$ for $y \in \boldsymbol{F}^{\times}$.
From this lemma follow the following propositions.
Proposition 2. Let $n=2$. The notation being as in Corollary 1, we have

$$
\left(H_{K}:\left\langle-1, \psi\left(H_{F}\right)\right\rangle\right)\left(H_{F}:\left\langle\rho, \varphi\left(H_{K}\right)\right\rangle\right)=2(\text { resp. 4) }
$$

in Case I (resp. Case II). If $\varepsilon_{2}=\sqrt{\varepsilon_{1} \eta_{2}} \in K$ in Case I, we have

$$
H_{F}\left(=E_{F}\right)=\left\langle\rho, \varphi\left(\varepsilon_{2}\right)\right\rangle \quad \text { and } \quad H_{K}=\left\langle-1, \psi\left(\varepsilon_{0}\right)\right\rangle .
$$

Proposition 3. Let $n=3$. The notation being as in Corollary 2, we have

$$
\left(H_{K}:\left\langle-1, \psi\left(H_{F}\right)\right\rangle\right)\left(H_{F}:\left\langle\rho, \varphi\left(H_{K}\right)\right\rangle\right)=3 \text { (resp. 9) }
$$

in Case I (resp. Case II). In Case I, it holds that

$$
H_{F}=\left\langle\rho, \varphi\left(\varepsilon_{2}\right)\right\rangle \quad \text { and } \quad H_{K}=\left\langle-1, \psi\left(\varepsilon_{0}\right)\right\rangle
$$

if $\varepsilon_{2}=\sqrt[3]{\varepsilon_{1} \eta_{2}^{ \pm 1}} \in K$, and that $\varepsilon_{3}=\eta_{3}$ if and only if $\varepsilon_{3}^{\prime}=\eta_{3}$.
In Case I, we study whether L has a Minkowski unit; a unit which together with some of its conjugates forms a set of fundamental units of L (cf. Brumer [1]). A condition that L has a real M-unit (Minkowski unit which is real) is obtained by Propositions 2 and 3.

Theorem 1. When $n=2$ (resp. 3) in Case I, the notation being as in Corollary 1 (resp. 2), the field L has a real M-unit ξ_{1} (i.e. $\xi_{1} \in E_{K}$ such that $E_{L}=\left\langle\omega, \xi_{1}, \xi_{1}^{o}, \cdots, \xi_{1}^{\left.g^{2 n-2}\right\rangle}\right\rangle$) if and only if

$$
\varepsilon_{2}=\sqrt{\varepsilon_{1} \eta_{2}}, E_{4}=\left\langle\omega, \eta_{2}\right\rangle \quad \text { and } \quad K \neq K_{2}\left(\sqrt{2 \eta_{2}}\right), \neq \boldsymbol{Q}(\sqrt[4]{2}),
$$

(resp. $\varepsilon_{2}=\sqrt[3]{\varepsilon_{1} \eta_{2}^{ \pm 1}}, \varepsilon_{3}=\sqrt{\varepsilon_{1} \eta_{3}}, E_{\Lambda}=\left\langle\omega, \eta_{2}\right\rangle$ and $E_{\Omega}=\left\langle\zeta, \eta_{3}, \eta_{3}^{\sigma}\right\rangle$), and then we can take $\xi_{1}=\varepsilon_{2}$ (resp. $\varepsilon_{2}^{-1} \varepsilon_{3}$) as an M-unit of L.

The proof of the "only if" part is easy. The "if" part is proved by showing that ε_{2} (resp. $\varepsilon_{2}^{-1} \varepsilon_{3}$) actually gives an M-unit on account of Proposition 2 (resp. 3) and of the fact that E_{L}^{n} is contained in E_{L}^{\prime}.

It seems more complicated to see whether L has an M-unit ξ_{1} which is not necessarily real (e.g. $E_{L}=\left\langle\omega, \xi_{1}, \xi_{1}^{\prime}, \xi_{1}^{\top}\right\rangle$ when $n=2$ in Case I). However, we have

Proposition 4. Let $n=2$ in Case I. The notation being as in Corollary 1, the field L has no M-unit if $E_{K}=\left\langle-1, \varepsilon_{1}, \eta_{2}\right\rangle$ and $E_{A}=\langle\omega$, $\left.\sqrt{\omega \eta_{2}}\right\rangle$.

The proof is given by showing contradiction under the assumption
that there is an M-unit in L.
3. Binomial unit. In the following, we assume $K=\boldsymbol{Q}(\theta)$ ($\theta:={ }^{2 n} \sqrt{d}>0$) is a real pure number field of degree $2 n$ with a natural number $d>1$. We may suppose that the action of G on $L=\boldsymbol{Q}(\theta, \zeta)$ satisfies that $\theta^{\sigma}=\zeta \theta, \theta^{\sigma}=\theta, \zeta^{\sigma}=\zeta$ and $\zeta^{\sigma}=\zeta^{-1}$. Then $F=\boldsymbol{Q}\left({ }^{2 n} \sqrt{\left.-n^{n} d\right)}\right.$ is a totally imaginary pure number field of degree $2 n$. We mention that $\sqrt{\eta_{2}} \notin K$ when $n=2$ and that $\sqrt[3]{\eta_{2}}, \sqrt{\eta_{3}} \notin K$ when $n=3$.

We can construct a set of fundamental units of K in a certain case when K has a binomial unit.

Theorem 2. Suppose that d is square free and that K has a binomial unit $a-b \theta$ with natural numbers a and b such that $a+1 \geq b^{2 n}$. Then a set $\left\{\xi_{i}\right\}_{i=1}^{n}$ of fundamental units of K is given by
$\xi_{1}=a-b \theta, \xi_{2}=a+b \theta$; and $\xi_{3}=a^{2}+a b \theta+b^{2} \theta^{2} \quad$ when $n=3$.
The theorem is proved by Stender's method in [8], [9] after some calculations. The field, which is considered in Theorem 2, is different from that of Stender [10] if $b>1$.

The simplest example of Theorem 2 is the case when $a=b^{2 n} c \pm 1$ with a natural number c and $d=\left(a^{2 n}-1\right) / b^{2 n}$ is square free. There are infinitely many such cases for any fixed (odd when $n=2$) natural number b (see [5]). This example has been treated more in detail in author's article [7] when $n=3$.

By Propositions 2, 3 and Theorem 2, we obtain
Corollary 3. The assumption being as in Theorem 2,

$$
E_{F}=\left\langle\rho, \varphi\left(\xi_{1}\right)\right\rangle\left(\text { resp. }\left\langle\rho, \varphi\left(\xi_{1}\right), \varphi\left(\xi_{1}^{\sigma^{3}}\right)\right\rangle\right) \quad \text { when } n=2(\text { resp. } 3)
$$

As an explicit form of a set of fundamental units of K is given in the case of Theorem 2, we can determine E_{4} and E_{Ω} according to Kuroda [4] and Iimura [3] and see that the condition of Theorem 1 is satisfied except for the case $d=2$. Thus we have

Theorem 3. The assumption being as in Theorem 2, ξ_{1} is a real M-unit of $L=\boldsymbol{Q}(\theta, \zeta)$ if $d \neq 2$.

Lastly, we give an example of L which has no (real or imaginary) M-unit in case when $n=2$. Let $\theta^{4}=d:=3 g^{2}$ with a square free natural number g which is not divisible by 3. Then the condition of Proposition 4 is verified easily (cf. [4] and [8]).

Proposition 5. The field $L=\boldsymbol{Q}\left(\sqrt[4]{3 g^{2}}, \sqrt{-1}\right)$ has no M-unit if g is a square free natural number prime to 3 .

References

[1] A. Brumer: On the group of units of an absolutely cyclic number field of prime degree. J. Math. Soc. Japan, 21, 357-358 (1968).
[2] H. Hasse: Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsch. Akad. Wiss. Berlin, Math.-Nat. Kl. 1948, nr. 2, 95 pp (1950).
[3] K. Iimura: On the unit groups of certain sextic number fields (to appear in Abh. Math. Seminar Hamburg, 50).
[4] S. Kuroda: Über den Dirichletschen Körper. J. Fac. Sci. Univ. Tokyo, Sec. IA, 4, 383-406 (1943).
[5] T. Nagell: Zur Arithmetik der Polynome. Abh. Math. Seminar Hamburg, 1, 174-194 (1922).
[6] -: Sur quelques questions dans la théorie des corps biquadratiques. Arkiv för Mathematik, 4, 347-376 (1961).
[7] K. Nakamula: An explicit formula for the fundamental units of a real pure sextic number field and its galois closure. Pacific J. Math., 83, 463471 (1979).
[8] H.-J. Stender: Grundeinheiten für einige unendlich Klassen reinen biquadratischen Zahlkörper mit einer Anwendung auf die diophantische Gleichung $x^{4}-a y^{4}= \pm c(c=1,2,4$ order 8). J. reine angew. Math., 264, 207220 (1973).
[9] _-: Über die Einheitengruppe der reinen algebraischen Zahlkörper sechsten Grades. Ibid., 268/269, 78-93 (1974).
[10] --: Lösbare Gleichungen $a x^{n}-b y^{n}=c$ und Grundeinheiten für einige algebraische Zahlkörper vom Grade $n, n=3,4,6$. Ibid., 290, 24-62 (1977) .

