18. Block Intersection Numbers of Block Designs

By Mitsuo Yoshizawa
Gakushuin University
(Communicated by Kunihiko Kodaira, m. J. A., Feb. 12, 1980)
§ 1. Introduction. In this note, we shall assume throughout that the block designs are nontrivial. For a $t-(v, k, \lambda)$ design \boldsymbol{D} we use $\lambda_{i}(0 \leqslant i \leqslant t)$ to represent the number of blocks which contain the given i points of D. A $t-(v, k, \lambda)$ design D is called block-schematic if the blocks of \boldsymbol{D} form an association scheme with the relations determined by size of intersection (cf. [3]). For a block B of a $t-(v, k, \lambda)$ design D we use $x_{i}(B)(0 \leqslant i \leqslant k)$ to denote the number of blocks each of which has exactly i points in common with B. If $x_{i}(B)$ is uniquely determined by the choice of a block B for each $i(i=0, \ldots, k)$, we shall say that D is block-regular, and we shall write x_{i} instead of $x_{i}(B)$. We remark that if a $t-(v, k, \lambda)$ design D is block-schematic, then \boldsymbol{D} is block-regular. In this note, we shall give the following two theorems. The detailed proofs will be given elsewhere.

Theorem 1. For each $n \geqslant 1$ and $\lambda \geqslant 1$,
(a) there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geqslant 3$, and
(b) if also $\lambda \geqslant 2$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geqslant 2$.

Theorem 2. Let c be a real number with $c>2$. Then for each $n \geqslant 1$ and $l \geqslant 0$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with $k-t=n, v \geqslant c t$ and $x_{i} \leqslant l$ for some $i(0 \leqslant i \leqslant t-1)$.

Remark. Since there exist infinitely many $2-(v, 3,1)$ designs, and since every $2-(v, k, 1)$ design is block-schematic (cf. [2]), Theorem 1 does not hold for $\lambda=1$ and $t=2$.
§ 2. Outline of the proof of Theorem 1. Lemma 1. Let D be a block-regular $t-(v, k, \lambda)$ design. Then the following equation holds for $i=0, \cdots, k-1$.

$$
x_{i}=\sum_{j=i}^{t-1}\binom{j}{i}\left(\lambda_{j}-1\right)\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(-1)^{i+j}
$$

where $x_{j} \leqslant w_{j} \leqslant(\lambda-1)\binom{k}{j} \quad(t \leqslant j \leqslant k-1)$.
Lemma 2. Let \boldsymbol{D} be a $t-(v, k, \lambda)$ design with $t, \lambda \geqslant 2$. If $v \geqslant k^{3}$, then there exist three blocks B_{1}, B_{2}, B_{3} of D such that $\left|B_{1} \cap B_{2}\right|=t-1$, $\left|B_{2} \cap B_{3}\right| \geqslant t$ and $\left|B_{1} \cap B_{3}\right|=t-2$.

By making use of Lemmas 1, 2 and the idea of Atsumi [1], we get
the following
Proposition. Let \boldsymbol{D} be a block-schematic $t-(v, k, \lambda)$ design with $t, \lambda \geqslant 2$. Then $v<\lambda k^{3}\binom{k}{[k / 2]}^{2}$ holds.

Lemma 3. For each $n \geqslant 1$, there is a positive integer $N_{1}(n)$ satisfying the following: If \boldsymbol{D} is a $t-(v, k, \lambda)$ design with $k-t=n$ and $t \geqslant N_{1}(n)$, then there exist two blocks B_{1} and B_{2} of \boldsymbol{D} such that $\left|B_{1} \cap B_{2}\right|=t-1$.

Lemma 4. For each $n \geqslant 1$, there is a positive integer $N_{2}(n)$ satisfying the following: If \boldsymbol{D} is a $t-(v, k, \lambda)$ design with $k-t=n$ and $t \geqslant N_{2}(n)$, then there exist three blocks B_{1}, B_{2}, B_{3} of D such that $\left|B_{1} \cap B_{2}\right|=t-1,\left|B_{2} \cap B_{3}\right|=t-1$ and $\left|B_{1} \cap B_{3}\right|=t-n-2$.

By making use of Lemma 1, Proposition, Lemma 4 and [1, Theorem], we prove Theorem 1.
§3. Outline of the proof of Theorem 2. Lemma 5. Let D be a block-regular $t-(v, k, \lambda)$ design. Then the following equation holds for $i=0, \cdots, t-1$.

$$
\begin{aligned}
x_{i}= & \frac{\lambda\binom{k}{i}}{\binom{v-t}{k-t}}\left\{\binom{v-k}{k-i}+(-1)^{t+i+1} \sum_{q=0}^{k-t-1}\binom{t-i-1+q}{q}\binom{v-k+q}{k-t}\right\} \\
& +(\lambda-1) \sum_{j=i}^{t-1}\binom{j}{i}\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(-1)^{i+j},
\end{aligned}
$$

where $x_{j} \leqslant w_{j} \leqslant(\lambda-1)\binom{k}{j}(t \leqslant j \leqslant k-1)$.
(The essential part of Lemma 5 is [4, Lemma 6].)
Lemma 6. For each $k \geqslant 2$ and $l \geqslant 0$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with $x_{i} \leqslant l$ for some $i(0 \leqslant i \leqslant t-1)$.

By making use of Lemmas 5 and 6, we prove Theorem 2.

References

[1] T. Atsumi: An extension of Cameron's result on block-schematic Steiner systems (to appear in J. Combinatorial Theory, ser. A).
[2] R. C. Bose: Strongly regular graphs, partial geometries, and partially balanced designs. Pacific J. Math., 13, 389-419 (1963).
[3] P. J. Cameron: Two remarks on Steiner systems. Geometriae Dedicata, 4, 403-418 (1975).
[4] B. H. Gross: Intersection triangles and block intersection numbers for Steiner systems. Math. Z., 139, 87-104 (1974).

