31. Extensions of Partially Ordered Abelian Groups

By Takayuki TAMURA

Department of Mathematics, University of California, Davis

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1980)

Let K be an abelian group and A the group of integers under addition. Let G be an abelian group extension of A by K with respect to a factor system $f: K \times K \rightarrow A$. The author proved in [4] that there exists a factor system $g: K \times K \rightarrow A$ such that $g(\alpha, \beta) \ge 0$ for all $\alpha, \beta \in K$ and g is equivalent to f. Nordahl [3] discussed the case where A is the group of real numbers. In this paper the author extends the results to the case where A is a partially ordered abelian group. The operation is additively denoted and the identity is denoted by 0. Let D be an abelian group and B a subsemigroup of D containing 0. A subsemigroup P of B is called a *cone* of B if (i) $0 \in P$, and (ii) $a, -a \in P$ imply a=0. P induces a compatible partial order on B, and every compatible partial order on B is determined by a cone P as follows [1]:

 $x, y \in B, \quad x \ge_{\rho} y$ if and only if $x - y \in P$. The order \ge_{ρ} is called the partial order associated with P, and (X, ρ) denotes a set X with a partial order ρ .

Let A be a subgroup of an abelian group G and let K = G/A, hence $G = \bigcup_{\xi \in K} A_{\xi}$, $A_0 = A$. Let T be a subsemigroup of G containing a cone P of A such that P generates $T \cap A$. Let $T_{\xi} = T \cap A_{\xi} \neq \phi$ for each $\xi \in K$. Also assume that there is a set $\{p_{\xi} : \xi \in K\}$ of exactly one element p_{ξ} from each A_{ξ} such that $T_{\xi} = p_{\xi} + T_0$ for each $\xi \in K$ where $T_0 = T \cap A$.

Lemma 1. The partial order ρ_0 on T_0 associated with P can be extended to a partial order ρ on T such that $\rho = \bigcup_{\varepsilon \in K} \rho_{\varepsilon}, \ \rho_{\varepsilon} = \rho | T_{\varepsilon}, \ and each (T_{\varepsilon}, \rho_{\varepsilon})$ is order-isomorphic to (T_0, ρ_0) .

Proof. Since P is also a cone of T, P determines a partial order ρ on T. We see that if $a, b \in T_0$ then $a \ge_{\rho_0} b$ if and only if $p_{\xi} + a \ge_{\rho_{\xi}} p_{\xi} + b$. We have $\rho = \bigcup_{\xi \in K} \rho_{\xi}$ as desired.

Let *H* be an abelian group, *X* a cone of *H* and ρ the partial order on *H* associated with *X*. Then *X* generates *H* if and only if (H, ρ) is directed in the sense of Proposition 3, [1, p. 13].

 $A, G, K, A_{\varepsilon}, A_{0}$ are defined above. Let $g: G \rightarrow K$ be the natural homomorphism. Let P be a cone of A such that A is generated by P, and let σ_{0} be the partial order on P associated with P.

Theorem 2. There exists a partially ordered subsemigroup (S, σ) of G such that the following are satisfied:

 $(2.1) \quad S \cap A = P.$

(2.2) If, for each $\xi \in g(S)$, $S_{\xi} = S \cap A_{\xi}$ and $\sigma_{\xi} = \sigma | S_{\xi}$, then (S_{ξ}, σ_{ξ}) is order-isomorphic to (P, σ_0) and $\sigma = \bigcup_{\xi \in g(S)} \sigma_{\xi}$.

(2.3) g(S) = K.

No. 3]

Proof. Let S be the set of all partially ordered subsemigroups (S, σ) of G such that (2.1)-(2.2) hold and g(S) is a subgroup of K. Since $P \in S$, $S \neq \phi$. Define a partial order \leq on S by $(S_1, \sigma_1) \leq (S_2, \sigma_2)$ if and only if (i) $g(S_1) \subseteq g(S_2)$, (ii) $\alpha \in g(S_1)$ implies $S_1 \cap A_\alpha = S_2 \cap A_\alpha$, (iii) $\sigma_2 | S_1 = \sigma_1$. Since S satisfies Zorn's property, there exists a maximal element $(\bar{S}, \bar{\sigma})$ in S. Let $\bar{S}_{\xi} = \bar{S} \cap A_{\xi}$, $\bar{S}_0 = \bar{S} \cap A = P$, $\bar{\sigma} = \bigcup_{\xi \in g(\bar{S})} \bar{\sigma}_{\xi}$ where $\bar{\sigma}_{\xi} = \bar{\sigma} | \bar{S}_{\xi}$. Suppose $g(\bar{S}) \neq K$. Let $H = g(\bar{S})$, $\alpha \in K \setminus H$.

Case I. In case $i \cdot \alpha \notin H$ for all non-zero integers *i*. Pick $p \in A_{\alpha}$ and $q \in A_{-\alpha}$. Then $p+q \in A$. Since P generates A, there is an $a \in P$ such that $p+q+a \in P$. Let r=p+a, s=q+a. Obviously $r \in A_a$ and $s \in A_{-\alpha}$ but $i \cdot r \notin \overline{S}$ and $i \cdot s \notin \overline{S}$ for all integers $i \neq 0$. Let T be the subsemigroup of G generated by \overline{S} , r and s. Let $\langle \alpha \rangle$ be the infinite cyclic subgroup of K generated by α . As $H \cap \langle \alpha \rangle = \{0\}$, we have g(T) = H $\oplus \langle \alpha \rangle$, thus g(T) is a subgroup of K. Every $x \in T$ has the form: Either $x=y+i \cdot r$ or $x=y+i \cdot s$ where $y \in \overline{S}$ and *i* is a nonnegative integer. Both i and $\xi = g(y)$ are uniquely determined by x. In particular if $x \in T \cap A$, then i=0, so $x \in \overline{S} \cap A$, hence $T \cap A = \overline{S} \cap A = P$. Since 0 is the $\bar{\sigma}_0$ -least element of $\bar{S}_0 = P$, \bar{S}_{ε} has the $\bar{\sigma}_{\varepsilon}$ -least element \bar{p}_{ε} for each $\xi \in g(\overline{S})$. Every element y of \overline{S} has a unique form $y = \overline{p}_{\xi} + z$ for $\xi \in g(\overline{S})$, $z \in P$. Let $T_{\eta} = T \cap A_{\eta}$ for each $\eta \in g(T)$. Let $x \in T$. If $x = y + i \cdot r$, $T_{\xi+i\cdot a} = T \cap A_{\xi+i\cdot a} = \overline{p}_{\xi} + i \cdot r + P. \quad \text{If } x = y + i \cdot s, \ T_{\xi-i\cdot a} = T \cap A_{\xi-i\cdot a} = \overline{p}_{\xi} + i \cdot s$ +P. By Lemma 1 we have an extension τ of $\bar{\sigma}$ to T such that $\tau = \bigcup_{\eta \in q(T)} \tau_{\eta}, \tau_{\eta} = \tau | T_{\eta} \text{ and } (T_{\eta}, \tau_{\eta}) \text{ is order-isomorphic to } (P, \sigma_0) \text{ for each}$ $\eta \in g(T)$.

Case II. In case $i_0 \cdot \alpha \in H$ for some positive integer $i_0 > 1$. (If $i_0 < 0$, take $-\alpha$ instead of α_1 .) Assume i_0 is the smallest of such, i.e., $i \cdot \alpha \notin H$ if $i < i_0$ but $i_0 \cdot \alpha \in H$. Let $p \in A_{\alpha}$. Then $i_0 \cdot p \in A_{i_0 \cdot \alpha}$. If $\overline{p}_{i_0 \cdot \alpha}$ denotes the $\overline{\sigma}_{i_0 \cdot \alpha}$ -least element of $\overline{S}_{i_0 \cdot \alpha}$, then $i_0 \cdot p - \overline{p}_{i_0 \cdot \alpha} \in A$, so there is an $a \in P$ such that $i_0 \cdot p - \overline{p}_{i_0 \cdot \alpha} + a \in P$, hence $i_0 \cdot p + a \in \overline{S}_{i_0 \cdot \alpha}$. Let q = p + a. Clearly $i \cdot q \notin \overline{S}$ for all $i < i_0$ but $i_0 \cdot q \in \overline{S}$. Let T be the subsemigroup of G generated by \overline{S} and q. Every element x of T has the form $x = y + i \cdot q$, $0 \le i < i_0$ where $y \in \overline{S}$. It is easy to see that g(T) is a subgroup of Kand $T \cap A = P$. Since $\overline{S}_{\varepsilon} = \overline{p}_{\varepsilon} + P$, $T \cap A_{\varepsilon + i \cdot \alpha} = (\overline{p}_{\varepsilon} + i \cdot q) + P$ for each $\xi \in g(\overline{S})$ where $\overline{p}_{\varepsilon}$ is the $\overline{\sigma}_{\varepsilon}$ -least element of $\overline{S}_{\varepsilon}$. By Lemma 1 there is an extension τ of $\overline{\sigma}$ to T satisfying the same conditions as in Case I.

In both Cases I and II, T satisfies (2.1), (2.2) and g(T) is a subgroup of K, hence $T \in \mathcal{S}$. But $\overline{S} \subseteq T$. This contradicts the maximality of \overline{S} . Therefore H=K. This completes the proof.

Theorem 3. Let K be an abelian group, and P a cone of A. Moreover, assume P generates A. If G is an abelian group extension of A by K with respect to a factor system $f: K \times K \rightarrow A$, then there is a factor system $g: K \times K \rightarrow A$ such that

(3.1) $g(\xi, \eta) \in P$ for all $\xi, \eta \in K$.

(3.2) g is equivalent to f.

Proof. Let $G = \{(x,\xi) : x \in A, \xi \in K\}$ where $(x,\xi)+(y,\eta)=(x+y+f(\xi,\eta),\xi+\eta)$. As f(0,0)=0, A is identified with $\{(x,0) : x \in A\}$ under $x \to (x, 0)$. By Theorem 2, there is a subsemigroup S of G satisfying (2.1)-(2.3). Let $S = \bigcup_{\xi \in K} S_{\xi}, S_0 = P$. Recall σ_0 is the partial order on P associated with P, and σ is the extension of σ_0 to S and $\sigma_{\xi} = \sigma | S_{\xi}, \sigma = \bigcup_{\xi \in K} S_{\xi}$ namely $(x,\xi) \ge_{\sigma} (y,\eta)$ if and only if $\xi = \eta$ and $x - y \in P$. Let (p_{ξ}, ξ) be the σ_{ξ} -least element of S_{ξ} . If $\xi = 0, p_0 = 0$ since $S_0 = P$. For $(p_{\xi}, \xi) \in S_{\xi}, (p_{\eta}, \eta) \in S_{\eta}$, we have

 $(p_{\varepsilon},\xi)+(p_{\eta},\eta)=(p_{\varepsilon}+p_{\eta}+f(\xi,\eta),\xi+\eta)\in S_{\varepsilon+\eta}.$ Since $(p_{\varepsilon+\eta},\xi+\eta)$ is the $\sigma_{\varepsilon+\eta}$ -least element of $S_{\varepsilon+\eta}$,

 $(p_{\xi}+p_{\eta}+f(\xi,\eta),\xi+\eta)\geq_{\sigma_{\xi+\eta}}(p_{\xi+\eta},\xi+\eta)$

whence $p_{\xi} + p_{\eta} + f(\xi, \eta) - p_{\xi+\eta} \in P$. Note p_{ξ} is a function $K \to A$. Let $g(\xi, \eta) = p_{\xi} + p_{\eta} - p_{\xi+\eta} + f(\xi, \eta)$. Then $g(\xi, \eta) \in P$ for all $\xi, \eta \in K$ and g(0, 0) = 0 since $p_0 = 0$. Thus g is a factor system $K \times K \to P$ and it is equivalent to f.

Remark. In the proof of Theorem 5 in [4], the author defined g by $g(\alpha, \beta) = f(\alpha, \beta) + \delta(\alpha) + \delta(\beta) - \delta(\alpha\beta)$. In order to make g a factor system, we should define δ' by $\delta'(\alpha) = 0$ if $\alpha = \varepsilon$; $\delta'(\alpha) = \delta(\alpha)$ if $\alpha \neq \varepsilon$; and define $g'(\alpha, \beta) = f(\alpha, \beta) + \delta'(\alpha) + \delta'(\beta) - \delta'(\alpha\beta)$. The author is grateful to Dr. Nordahl.

References

- [1] Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press (1963).
- [2] ——: Infinite Abelian Groups. vol. 1, Academic Press (1970).
- [3] Nordahl, T. E.: Abelian groups and *n*-semigroups. II. Proc. Japan Acad., 53, 8-10 (1977).
- [4] Tamura, T.: Abelian groups and N-semigroups. Ibid., 46, 212-216 (1970).