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1. Introduction. This note is. a continuation of our previous
note [2] and we shall use the terminologies in [2].

We shall consider various Dirichlet problems on the unit ball D
in the space E defined in [2, 3]. In particular we shall establish a
finite dimensional approximation theorem (Theorem 4.1) of Dirichlet
solutions on D which may be regarded as a reformulation of L6vy’s
"la m6thode du passage du fini l’infini" (see [1, p. 307]).

2. Spherical Brownian motion (continued from [2, 4]). The
standard Gaussian white noise p defined in [2, 2] can be easily ex-
tended to the measurable space (S, ) as follows.

/(A) P(B(1, ) e A) for A e
where {B(t)} is the Brownian motion given in [2, 3].

Our first assertion is
Theorem 2.1. Let f() be a bounded, cylindrically measurable,

01-continuous function on S. Then we have

lira Ne[f()]= f()(d) for S,

and the white noise [ is the unique invariant probability measure of
the spherical Brownian motion {}.

Consequently we have the following contraction semi-group
{T t >0} ([5, Chap. IX]) on the complex Hilbert space L(S,/):

Ttf() =E*[f(t)] (t/>0) for f e L(S,
Now we have

Theorem 2.2. The infinitesimal generator of {Tt} i8 self-ad]oint
operator with the pure-point spectrum {-n/2 n=O, 1,2,...} and the
eigenspace of the eigenvalue --n/2 is spanned by { IKl=n}, (see [2,
2] for definitions). This infinitesimal generator agrees with the in-

finite dimensional Laplacian operator of Y. Umemura (see [4]), up to
constant 1/2.

Next we shall see that the spherical Brownian motion is homo-
geneous under the group G of linear bimeasurable bijections g of E
to E satisfying

/(g.)=/(.) and ]lgxl]=llxll forxeE.
Proposition 2.3. For g e G and A e , it holds that
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(t e gA)--P(t e A).
For a given sequence of integers (p, ..., p, ...) such that

2plpf...pn..., and limpn/i/p--1,

we are given a bijection a of {1, 2, 3,...} onto itself which is also a
permutation of {p+ 1, p+ 2, ., p/} for each n. We then define
the mapping g of E onto itself by

(gX)n--Xa(n) for x:(x, x., x, ...) e
Theorem 2.4. Mappings g of the above-mentioned type form a

subgroup Go of G.
:. Dirichlet problems on the unit ball of E. We denote by

r and the first exit time from a domain U of the Brownian motion
B, and the one from the un,it ball D=(x e E;[] x l]1} respectively.

Now we reformulate the Dirichlet problems treated by Paul Lvy
in his book [1] in terms of the infinite dimensional Brownian motion.

Theorem :.1. For a real bounded measurable continuous rune-
tion () on S, the function f defined on D by

f(x)=Ex[(B)]
is the unique function satisfying the following conditions"

i) The function f(x) is a real bounded measurable continuous
function on D.

ii) For any subdomain U such that the exit time from U is a
stopping time and the closure U of U is in D, it holds that

f(x)=E[f(B(rv))] on D.
iii) For any point e S,

lim f(x) ().

Theorem :.2. For e, e, ..., e e F such that ][el]0 and for a
real bounded measurable function h(s, ..., s, x, ..., x) on the space

R+ R (R/=[0, c)), we define the function () on S such that
()=h( +e ..., l+e[],, ...,)

for =(l, ",n, ")e S. Then the function f defined on D by
f(x)=Ex[(B)]

is the unique function satisfying the following conditions"
i) The function f(x) is a real bounded measurable function on

D.
ii) For any x e D, the function f(B(o)) is continuous in t on

[0, r(w)) a.s. Px, and
lim f(Bt(w))=(B(w)) a.8. P.

iii) For any domain U such that the exit time rv is a stopping
time and UcD, it holds that

f(x)=E[f(B(rv))] on D.
Theorem :.:. Let () be a tame function on S given by

()--(, ..., ) for -- (1, "",, "") e S,
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where (u, ., u) is a real measurable function on R such that

(-- u/2)du<X13

Then the function f defined on D by
f(x)=E[(B)]

is the unique function satisfying the following conditions"
i) The function f(x) is a real measurable continuous function

on D.
ii) For any subdomain U such that the exit time is a stopping

time and UcD, it holds that
f(x)-E[f(B(r))] on D.

iii) lira f(B,((o))=(B(o)) a.s. P, x D.
()

iv) For any point x e D and for any sequence of subdomains

{U} such that each exit time r=r. is a stopping time and UU/I,

U Vn=D, the family {f(B(vn)) n=l, 2, 3, ...} is uniformly px_
It----1

integrable.
Next we define the harmonic measure/ relative to x e D and D

by putting
g(A) P(B e A) for A

Then we have
Theorem 3.4. i) Harmonic measures and/ are equivalent,

if and only if the sequence x--Y--(x--Yi,’’ ", x--y,...) is square
summable.

ii) For any g e G, x e D and A e , it holds that
tq(gA)=I(A).

Here we pause to give an interpretation to the Lvy’s mean value
ormula (see [1, p. 316, (24)]). Take a e D and r such that 02r1
--[lall and denote by S(a,r) the sphere (x e E; x--a =r}. Define
a mapping T’S-S(a, r) such that

T=(1--(r/ll--a I))a+(r/ [--a I).
Then we have

Theorem 3.5. For any measurable subset AcS(a, r),
z(T e A)=z((A--a)/r)

with the standard Gaussian white noise
A domain D is said to be semi-bounded, if {Ix X e D} is bounded

in R for a semi-norm II" [l (l<n<c). Now we say a measurable
function f on a domain D to be harmonic, if the following conditions
are satisfied"

i) For any semi-bounded domain U such that r is a stopping
time and UcD, it holds that

f(x)=E[f(B(r))] on D.
ii) The function f(B()) is continuous in t on [0, r(w)) a.s. px,
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x e D, where r() is the exit time rom D.
As a pathological phenomenon, the unicity principle does not

hold. In act we can prove
Proposition 3.6. For a real continuous bounded function on R

and e E such that 11110, we define the function f(x) on E by
f(x)=((x, }),

where 4(x, }=l]x+ll--IIx--ll. Then the function f(x) is harmonic
on E.

Further we have
Proposition :.7. Let f(x) be a tame function on E given by

f(x)=(xl, ..., xn) for x=(xl, ..., xn, ...) e E,
where (xl, ., x) is a harmonic polynomial on Rn. Then the function
f(x) on E is harmonic on E.

4. linite dimensional approximation to Dirichlet solutions on
the unit ball. In the previous sections, we defined the space E, the
O-topology and the Brownian motion B on E. We are going to show
that these objects are compatible in the sense mentioned-below.

With a real unction (u,,..., u) on R such that

(4.1) .[(u) exp (-- u /2)du<

we associate the unction () on S
()=(, ..., ).

Now we note that the projection p which has been introduced by
using the branching rule in [2, 2] can be regarded as a projection
rom L(S,/) to L(S,/n), where S is the n-dimensional sphere with
radius /n+ 1 and/n is the uniform probability measure on S. Hence
we obtain a projectively consistent sequence {pn;n>l} and we can
see that each Pn has a continuous version . on S. Let f(x) be the
Dirichlet solution on the ball D {(Xl, Xn I) X21-- +x+<n+l}
corresponding to the boundary function . Now let us lift f(x) to a
function f(nX) on {x e D Ilxl}>0} by the following projection "x (11 x I1 /II x I1 /,)(x,, o, Xn+ 1) e R 1\ {0}
for x (x, ., x/, ...) e E with x 11 >0, x I1/. Then we have the
following remarkable result.

Theorem 4.1. If the function satisfies the condition (4.1) and
an additional condition:

(4.2) .[ I(u) du<

then for any point x e D such that lim Ix I1 x > 0,

(4.3) limf=(zx)=Ex[(B)].
Further we can show that the equality (4.3) holds for polynomials
(ul, ..., u), which do not satisfy the condition (4.2).
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