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On a Conjecture of S. Chowla and of S. Chowla
and H. Walum. III

By Shigeru KANEMITSU*) and
Rudrabhatla SITA RAMA CHANDRA RAO**)

(Communicated by Kunihiko KODAIRA, M. $. A., April 12, 1980)

Let P(v) denote the periodic Bernoulli polynomial of degree
r P(v) =B({v}), where B(v) is the r-th Bernoulli polynomial, {v} v
--[v] being the ractional part of v ([v] is the greatest integer not
exceeding v). For a e R and r e N we put

(1) G,(x)= ] np(X.
n< / \n/

Then Chowla and Walum’s conjecture is that tere holds the estimate
( 2 ) G,(x) O(x/+/+9
for every positive e (cf. [3], [6]). The case r=l is concerned with
Dirichlet’s divisor problem and presents a difficulty of the highest
degree, and the case r=2 is called Chowla’s conjecture [4], [6], which
seems to be as deep as the divisor problem itself: For every positive

1
e and ()={v}-

n

We have proved in [6] that a stronger version of (2) is true if

a --1 and r>= 2, namely we can claim that
--2

( 4 ) G,(x) O(xn+/), Gn,(x) O(x/ log x)
1 and r2 it holdsin the case specified above, while in case 0ga

that
5 ) G,(x) O(x( )o).

In this note we shall give further developments in the investiga-

tion of the conjecture (2) in case a and r 2, namely, we shall state
2

a series representation for G,(x) similar to that for Go,(x) obtained

by Wigert [9], an average result or a analogous to that
2 2

proved by Hardy [5] regarding Dirichlet’s divisor problem, and finally
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an /2-result which follows from Berndt’s theorem [1].
proofs of the following theorems will be given elsewhere.

1 <k<,Theorem 1. We have for ---- The detailed

( 6 ) G,.(x)--- xn/fl_(4V)-x-’G.-,.(x) + O(x/9,

so that

(7)
/.

G,(x) iTz fl_(4z:/)+ O(xn/

where

(S) a(n) ( )f(x)=__ n-) sin /x---
a(n) being the sum of k-th powers of divisors of n.

Theorem 2. We have for every positive

l<k<lprovided that

Theorem 3. For every positive it holds that

(10) x-.[: [G,(t), dt=O(x’/+//’),

i.e. Chowla and Walum’s conjecture (2) is true on average if
1 < k< 1 in particular

(11) x -’ [G0,(t)l dt=O(x’//9,

i.e. Chowla’s conjecture (3) is true on average.

1 1 then we haveTheorem 4. If < k ,
(12)
and

G,2(x) 2 (xn/ ’/ (log x)1/4-/2)

(13) lim inf G,(x)
X/2 1/4

Corollary. If R(x, r) denotes the non-trivial error term in the
asymptotic formula for
(14) , (xr--nga_(n),

n_x

then
(15)
and

R(x, r)=9_(x(-’)/ (log x)/-/)

(16) lim sup R(x, r____) + oo
(2r-1)/4
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