43. On a Conjecture of S. Chowla and of S. Chowla and H. Walum. III

By Shigeru Kanemitsu*) and Rudrabhatla Sita Rama Chandra Rao**)
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1980)

Let $P_{r}(v)$ denote the periodic Bernoulli polynomial of degree $r: P_{r}(v)=B_{r}(\{v\})$, where $B_{r}(v)$ is the r-th Bernoulli polynomial, $\{v\}=v$ $-[v]$ being the fractional part of v ($[v]$ is the greatest integer not exceeding v). For $a \in R$ and $r \in N$ we put

$$
\begin{equation*}
G_{a, r}(x)=\sum_{n \leq \sqrt{x}} n^{a} P_{r}\left(\frac{x}{n}\right) . \tag{1}
\end{equation*}
$$

Then Chowla and Walum's conjecture is that there holds the estimate (2)

$$
G_{a, r}(x)=O\left(x^{a / 2+1 / 4+\varepsilon}\right)
$$

for every positive ε (cf. [3], [6]). The case $r=1$ is concerned with Dirichlet's divisor problem and presents a difficulty of the highest degree, and the case $r=2$ is called Chowla's conjecture [4], [6], which seems to be as deep as the divisor problem itself: For every positive ε and $\psi(v)=\{v\}-\frac{1}{2}$

$$
\begin{equation*}
G_{0,2}(x)=\sum_{n \leqq \sqrt{x}}\left\{\psi^{2}\left(\frac{x}{n}\right)-\frac{1}{12}\right\}=O\left(x^{1 / 4+e}\right) . \tag{3}
\end{equation*}
$$

We have proved in [6] that a stronger version of (2) is true if $a \geqq \frac{1}{2}$ and $r \geqq 2$, namely we can claim that

$$
\begin{equation*}
G_{a, r}(x)=O\left(x^{a / 2+1 / 4}\right), \quad G_{1 / 2, r}(x)=O\left(x^{1 / 2} \log x\right) \tag{4}
\end{equation*}
$$

in the case specified above, while in case $0 \leqq a<\frac{1}{2}$ and $r \geqq 2$ it holds that

$$
\begin{equation*}
G_{a, r}(x)=O\left(x^{(4 a+3) / 10}\right) \tag{5}
\end{equation*}
$$

In this note we shall give further developments in the investigation of the conjecture (2) in case $a<\frac{1}{2}$ and $r=2$, namely, we shall state a series representation for $G_{a, 2}(x)$ similar to that for $G_{0,2}(x)$ obtained by Wigert [9], an average result for $-\frac{1}{2}<a<\frac{1}{2}$ analogous to that proved by Hardy [5] regarding Dirichlet's divisor problem, and finally

[^0]an Ω-result which follows from Berndt's theorem [1]. The detailed proofs of the following theorems will be given elsewhere.

Theorem 1. We have for $-\frac{1}{2}<k<\frac{3}{2}$,

$$
\begin{equation*}
G_{k, 2}(x)=-\frac{x^{k / 2+1 / 4}}{2^{1 / 2} \pi^{2}} f_{1-k}(4 \pi \sqrt{x})-x^{k-1} G_{2-k, 2}(x)+O\left(x^{k / 2}\right) \tag{6}
\end{equation*}
$$

so that

$$
\begin{equation*}
G_{k, 2}(x)=-\frac{x^{k / 2+1 / 4}}{2^{1 / 2} \pi^{2}} f_{1-k}(4 \pi \sqrt{x})+O\left(x^{k / 2+1 / 4}\right), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{k}(x)=\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n^{5 / 4+k / 2}} \sin \left(\sqrt{n} x-\frac{\pi}{4}\right), \tag{8}
\end{equation*}
$$

$\sigma_{k}(n)$ being the sum of k-th powers of divisors of n.
Theorem 2. We have for every positive ε

$$
\begin{equation*}
\int_{1}^{x}\left\{G_{k, 2}(t)\right\}^{2} d t=O\left(x^{3 / 2+k+\varepsilon}\right), \tag{9}
\end{equation*}
$$

provided that $-\frac{1}{2}<k<\frac{1}{2}$.
Theorem 3. For every positive ε it holds that

$$
\begin{equation*}
x^{-1} \int_{1}^{x}\left|G_{k, 2}(t)\right| d t=O\left(x^{1 / 4+k / 2+\varepsilon}\right) \tag{10}
\end{equation*}
$$

i.e. Chowla and Walum's conjecture (2) is true on average if $-\frac{1}{2}<k<\frac{1}{2}$; in particular

$$
\begin{equation*}
x^{-1} \int_{1}^{x}\left|G_{0,2}(t)\right| d t=O\left(x^{1 / 4+e}\right), \tag{11}
\end{equation*}
$$

i.e. Chowla's conjecture (3) is true on average.

Theorem 4. If $-\frac{1}{2}<k<\frac{1}{2}$, then we have

$$
\begin{equation*}
G_{k, 2}(x)=\Omega_{+}\left(x^{k / 2+1 / 4}(\log x)^{1 / 4-k / 2}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{G_{k, 2}(x)}{x^{k / 2+1 / 4}}=-\infty \tag{13}
\end{equation*}
$$

Corollary. If $R(x, r)$ denotes the non-trivial error term in the asymptotic formula for

$$
\begin{equation*}
\sum_{n \leq x}\left(x^{r}-n^{r}\right) \sigma_{-r}(n), \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
R(x, r)=\Omega_{-}\left(x^{(2 r-1) / 4}(\log x)^{3 / 4-r / 2}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{R(x, r)}{x^{(2 r-1) / 4}}=+\infty \tag{16}
\end{equation*}
$$

for $\frac{1}{2}<r<\frac{3}{2}$.

References

[1] B. C. Berndt: On the average order of some arithmetical functions. Bull. Amer. Math. Soc., 76, 856-859 (1970).
[2] K. Chandrasekharan and Raghavan Narasimhan: Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math., 76, 93-136 (1962).
[3] S. Chowla and H. Walum: On the divisor problem. Norske Vid. Selsk. Forh. (Trondheim), 36, 127-134 (1963) ; Proc. Sympos. Pure Math., vol. 8, Amer. Math. Soc., Providence, R. I., pp. 138-143 (1965).
[4] S. Chowla: The Riemann hypothesis and Hibert's tenth problem. Math. and its Applications. Vol. 4, Gordon and Breach, New York (1965).
[5] G. H. Hardy: The average order of the arithmetical functions $P(x)$ and $\Delta(x)$. Proc. London Math. Soc., 15 (2), 192-213 (1916); Collected papers II, pp. 294-315.
[6] S. Kanemitsu and R. Sita Rama Chandra Rao: On a conjecture of S. Chowla and of S. Chowla and H. Walum (to appear).
[7] -: Ditto. II (to appear).
[8] A. Walfisz: Teilerprobleme. Vierte Abhandlung. Annali della Scuola Norm. Sup.-Pisa, 5 (2), 289-298 (1936).
[9] S. Wigert: Sur quelques fonctions arithmétique. Acta Math., 37, 113-140 (1914).

[^0]: *) Department of Mathematics, Faculty of Science, Kyushu University, Fukuoka, Japan.
 **) Department of Mathematics, Andhra University, Waltair, India.

