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1. Introduction. This paper continues the study of the classes
of polynomials in 2 variables given in Dunn and Lidl [3] and generalizes
these polynomials in two ways: They are generalized to polynomials
in k variables over an arbitrary field K ; secondly a parameter b ¢ K
is introduced for these polynomials, similar to the generalization of
the classical Chebyshev polynomials in one variable as in Dickson [1]
and Schur [14]. In analysis, the most important case, of course, is
K=C and b=1, which gives a natural generalization of the Chebyshev
polynomials, see Koornwinder [8]. However, there are also some in-
teresting algebraic and number theoretic properties in the more general
case of a field K and b € K, particularly for K=GF(q) the one-dimen-
sional polynomials have been studied extensively; see Lansch and
Noébauer [9], Fried [6] and Schur [14]. We use the same notation as
in [3] and obtain generating functions and recurrence relations for
generalized Chebyshev polynomials of the first and second kind in &
variables. In the present paper we are not considering any of the
analytic properties of the polynomials (for k=1 see Rivlin [13] or Szegd
[15]), such as partial differential operators or orthogonality. A dif-
ferent approach to give multi-dimensional extensions of Chebyshev
polynomials is introduced by Hays [7]. For some properties of special
functions in & variables and a bibliography including the earlier papers
on the subject we refer to [6]. We have organized the presentation
of the material into I and II, each consisting of two sections: §2 Defi-
nitions, § 3 Results in I and §4 Proofs, § 5 Outlook in II.

2. Definitions. Dickson [1] generalized the classical Chebyshev
polynomials in the following way. Let K be a field, r(z)=2*—22+b a
polynomial over K with roots # and v in a suitable extension field L of
K (e.g. if K=C then L=C, if K=GF(q) then L=GF(¢%). Then gen-
eralizations of the Chebyshev polynomials in one variable of the first
and second kind are given by (2.1) and (2.2), respectively.

2.1) P %y ; D)y=u"+0", forne Z
2.2) PY(x; b)=(u—v)"'(u ' —o"*), for n>0,
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P}L/Z(x ; b)=(u—-l_,v—l)—l(u-(n+1)__v—(n+1))’ for n<0’
where x=u+v, uwv=>be K. In the special case K=L=C, b=1, and
n>0, let u=e¢*®, v=e¢-*®. Then we have
P72 cos ©; 1)=2T ,(cos ©)=2 cos nd
and
P2 cos0;1)=U,(cos O)=(sin ®) ' sin (n+1)0O,
where T, and U, denote the classical Chebyshev polynomials in one
variable of the first and second kind, respectively. With x=-cos © this
gives the simple relationship

2.3) P;22x; 1)=2T,(x) and PYQx;1)=U,(x).

More generally (see Lausch and Nébauer [9], p. 209, Schur [14]):
2.4 P b)=2(/ b T(_”T)

(2.4) (@;0)=2(b) WA

2.5 Pz b)=(/ b U(_..Z”.:>

(2.5) (@; D)=(Wb) 5/

Therefore the polynomials defined in (2.1) and (2.2) can be regarded
as generalized Chebyshev polynomials. Now we consider the k-dimen-
sional case. Let u,, 1<i<k+1, be elements in a suitable extension
field L of the field K, for example, in case K=C we take L=C, in case
K=GF(q) we take L=GF(¢**"!) (compare with [10]). Let uu,- - -u,,,
=be K. The i-th elementary symmetric function ¢, in w,, - - -, %,,, is
denoted by z,, i.e.

Ty=U+ -+ F U1 =0, Uyy - -+ Upyr)

Xy =UUy+ UgUs+ - - - WUy =0 (U, -+ -y U, 1)
(2.6)

B =Wy Ut Uy U Ue g+ Uy U1 =04y -+ U yy)

Ly =Wy U1 =041 (U, - =+, Uy ) =D
‘We introduce a generalization of the Chebyshev polynomials of the

first kind, using z to denote the k-dimensional vector (x,, - - -, x,).

Definition 2.1. P, (z; b)=kf]1l ’S]iuz”u;" for integers m, n and a

Rk
nonzero element b in K.

These polynomials are k-dimensional generalizations of the poly-
nomials P,%*(x,y ; 1) introduced by Koornwinder [8] in case K=C and
also investigated in [3]. The special polynomials P, *(z; b), denoted
by kg¢.(z), have been introduced by Lidl and Wells [10] ag k£ times the
m-th power sum of the roots of the polynomial

r(@)=2""'—x* + 22"+ - - - H (= D2+ (—D*'b
over K. In case K=C they were also introduced by Ricci[12]. using
the notation from [8] or [3] for these polynomials, we have

@ PIp(z; b=k > ur=kg,(z; b)
=i
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and

(2.3 Piz; )=k Z u;"=kg_,(z; D).

Thus we can derive from Deﬁnltlon 2.1.

(2.9) Pz b)—-——P (2 s O)Ps (x5 b)— __P,,,I/ﬁ oz ; b).

In order to define generahzed Chebyshev polynomials of the second
kind we introduce the matrix U, , of elements u,, - - -, %, in an exten-
sion L of K, where u,- - -u,,,=bec K.
(e uptk. gt
lag= =tk
(2‘10) ]lm’n-_—- } ................ for m,n> 0.
Uy Uy v Ugyn
luf" Ut U
Let 1S denote the matrix which is obtained from 11, , by replacing
u, by u;* for 1=1,2, -- ., k+1. Then we define polynomials over the
field K by
Definition 2.2. P2 (z; b)=(det 11,,,,)(det U,)~*
P, _(x; b)=(det USD)(det 17")"
where the matrix U, , is given by (2.10) and z=(x,, - - -, %),
=0,y -y Up,r), 1<i<k+1, and x,,,=beK.
Finally we generalize the polynomials D, *(x, ) introduced in [3]
to the k-dimensional case.
Definition 2.3. The polynomials D, (x) in k variables
(x,, - -+, 2,)=2z are given by the generating function

Z Z D2 L @)sm. - spr

my=0 mg=0

_ (-G e)-g

”
(=) (559

As orthogonal polynomials over R on the hypershpere i} zi=1
t=1

.

with weight function (1 — f‘ xﬁ) o these polynomials could be regarded
i=1

as Chebyshev polynomials of the first kind in & variables. Polynomials
of the second kind can be defined by replacing the numerator of the
generating function in Definition 2.3 by 1. Thus

Definition 2.4.

1 mi, ., gmE— 1

2y 2 D@8 A—Ssar+A-n 8

3. Results. We use the notation z=(z,, - - -, 2,), introduced in
§2. In Lemma 3.1 &'=(&;, Ty_qy -+ +» L)

Lemma 3.1. PZ2(z; D)=P;(x; b)=P,; (b "¢’ ; b~
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P2 (x5 D)=Py(z; b)=P (b '¢'; b7).
The restriction =0 in Definitions 2.1 and 2.2 are not crucial, be-
cause of
Lemma 3.2. P;%x; 0)=P, }(x,, - -+, Tp_y; T)
P:rfo(ﬁ > 0)—P%?o(x1y Ceey Xy X
From (2.9) and Lemma 3.1 we have,

Lemma 3.3. P;%(z; b)—-——P w3 DYPZ5(2 5 b)— _P;Ll/fz,O(@; b)

Lemma 3.4. n Z, b s b)s’".—-—%—:——

_]_~_ - 1/2 . b tm= N—

k = -m,O('Z’ ) D_
where
3.1 = i‘ (41— 9)(—1)'a,s"
3.2) = i: 1—)(— Db, 8"
3.3) D=3 (—Dias
3.4) D=5 (=)@,

=0

Theorem 3.5 (Generating Function).

N, N_.—M
P 1/2 ; b ""t"‘: + -
,;O,ZZ »(@; b)s D.D.

where 1—styM=D,N_+D_N,—(k+1D.,D_.
Theorem 3.6 (Recurrence Relation).

poa=St (—nrw P, for m>k
i=1

k+1
PUE=b" 3 (="' % Pris for n>k,
i=1
where x,,,=b, x,=1 and the initial conditions are given by

P‘W—Z( D', PrY2 o+ E(— D™k +1—m)x, for 0<m<k

P =3 (=1 @1 P ot B(— DR+ 1= m)b '@y 1

i=1
for 0<m<k.

and

P-ie —LP 1/2P—1/2 P—l/z

myn kz m,0 k m—-mn,0°

In the special cases n=0, and b=1 these results have been obtained
in [11]. We list some of the polynomials P;(z; b) of small degrees
for k=2 and k=3.
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k=2 k=3
Py 6 12
Py 2b7'y 3b-z
P 2b~*(y*—2bx) 3b-2(2*—2by)
Pl—bl/z 2x 3%’
P b (wy—3d) b-Y(xz—4b)
P32 b-*(xy®—2bx*—by) b~*(x2*—2bxy — bz)
Py 2(x*—2y) 3(x:—2y)
P b-\(w*y — 29— bx) b (a2 —2yz— b)

P;% b (xty*— 2y —2bx +4bxy—3b%) b (w2’ — ba*yz—2yz*+4by*—4b%)

Generating functions and recurrence relations for the generalized
Chebyshev polynomials P2, of the second kind follow now. D, and
D_ are as in Lemma 3.4.

1

Lemma 3.7. Z P2(z; bit™ = D 1

and > P2 (z; D)=

+ m= -

Theorem 3.8 (Generating Function).
1—st
P2 (x; b)smtr=——"",
2: 0 nZ‘ i @;b) D.D_

Theorem 3.9 (Recurrence Relation).
min (m,k+1)

P2.= > (=D 'wPp,, form>1
=1
min(n,t+1)

Piﬁn: Z (_1)£_lb~lxk+1_¢P:,{?n_i fO?" n>1

where

pPi=1, PYi=uw, Pii=b"'z, and Pi=b'zx,—1.
We can see that for \m|>k the polynomials P satisfy the same re-
currence relation as P,

Corollary 3.10. Py = Z‘( D 'w, P

l—/?n 0= Z (=D w4 tP—-m+1, 0
for 0<m<k.
Lemma 3.11. P} =PYPV: —P2 P o0 for m, n=+0.
min (m,k)
Lemma 3.12. %P;,gﬂ(x; D)=""2"" (b+1=)(—D'wPi(a; D)
for m>0.
'We list some of the polynomials P}?, of small degrees for k=2 and
k=3.

k=2 k=3
o1 1
P by bz
Py by —ba) b=*(z*—by)
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k=2 k=3
Py ®
Py b7(xy—D) b-(xz—b)
P by —bx*—by) b (x2*—baxy—bz)
P x—y 2 —y
0 (@Y —y—bw) b~z —yz—bx)

A b (x*y*— ba*—y®) bA(x*E— bax*y — Y2t -+ by*— bxz)

Finally we have the following relationship between the polynomials
introduced in Definitions (2.3), (2.4) and (2.1), (2.2).
Theorem 3.13. Do‘}{?,mi,...,o(x)=%P;;{?,(sz 1 jii x?,) M0,
T
DY @ =Pio(2231= 2 ) mi0.
j=1

J#i



