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1. Introduction. This paper continues the study of the classes
o polynomials in 2 variables given in Dunn and Lidl [3] and generalizes
these polynomials in two ways." They are generalized to polynomials
in k variables, over an arbitrary field K secondly a parameter b e K
is introduced for these polynomials, similar to the generalization oi
the classical Chebyshev polynomials in one variable as in Dickson [1]
and Schur [14]. In analysis, the most important case, of course, is
K-C and b 1, which gives a natural generalization of the Chebyshev
polynomials, see Koornwinder [8]. However, there are also some in-
teresting algebraic and number theoretic properties in the more general
case o a field K and b e K, particularly or K-GF(q) the one-dimen-
sional polynomials have been studied extensively; see Lansch and
NSbauer [9], Fried [6] and Schur [14]. We use the same notation as
in [3] and obtain generating unctions and recurrence relations for
generalized Chebyshev polynomials o the first and second kind in
variables. In the present paper we are not considering any of the
analytic properties oi the polynomials (for k-- 1 see Rivlin [13] or Szeg5
[15]), such as partial differential operators or orthogonality. A dif-
ferent approach to give multi-dimensional extensions, o Chebyshev
polynomials is. introduced by Hays. [7]. For some properties of special
functions, in k variables and a bibliography including the earlier papers
on the subject we refer to [5]. We have organized the presentation
o the material into I and II, each consisting of two sections: 2 Defi-
nitions, 3 Results in I and 4 Proofs., 5 Outlook in II.

2. Definitions. Dickson [1] generalized the classical Chebyshev
polynomials in the ollowing way. Let K be a field, r(z)-z-xz+ b a
polynomial over K with roots, u and v in a suitable extension field L o
K (e.g. i K--C then L--C, if K=GF(q) then L-GF(q2)). Then gen-
eralizations o the Chebyshev polynomials in one variable of the first
and second kind are given by (2.1) and (2.2), respectively.
(2.1) P;X/2(x b)=u + v, for n e Z

P (x; b)=(u-v)-l(u+’ v+),(2.2)
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plaid(x; b)=(u--v-9-(u-(/)-v-(+)), or n0,
where x=u+v, uv=b e K. In the special case K=L=C, b=l, and
n_ 0, let u-- e, v e-. Then we have

P;/(2 cos ; 1)=2T(cos )=2 cos nO
and

P/(2 cos 1)= Un(cOs )= (sin )- sin (n+ 1),
where T and U denote the classical Chebyshev polynomials in one
variable of the first and second kind, respectively. With x=cos this
gives the simple relationship
(2.3) P;/(2x; 1)=2T(x) and P/(2x; 1)= U(x).
More generally (see Lausch and NSbauer [9], p. 209, Schur [14])"

(2.4) P/(x b)= 2()T( x )
(. PF(; b=(-u .-.
Therefore he olynomials defined in (2.1) and (2.2) can be regarded
as generalized Chebyshev polynomials. Now we consider he -dimen-
sional ease. Le , 1<i<+1, be elements in a suitable extension
field L of he field K, for example, in ease K=C we ake L=C, in ease
K=GF(q) we take L=GF(q() (compare with [10]). Let uu...u

b e K. The i-th elementary symmetric function in u, ., U+l is
denoted by x, i.e.

x=u+... +u+=a(u, .-., u+,)

x=uu. +uu+ +uu+=a(u, ., u+)
(2.6)

[x=u. .u+u. .u_u++ +uu. .u+=a(u, ..., u+)
[x+=uu. .u+=a+(u, ., +)=b.

We introduce a generalization of the Chebyshev polynomials o the
first kind, using to denote the k-dimensional vector (x,, ..., x).

+1
-/2Definition 2.1. P,( b)= uu7 for integers m, n and a

i= j=

nonzero element b in K.
These polynomials are k-dimensional generalizations of the poly-

nomials -/P, (x, y; 1) introduced by Koornwinder [8] in case K=C and
also investigated in [3]. The special polynomials P,g(; b), denoted
by kg(), have been introduced by Lidl and Wells [10] as k times the
m-th power sum of the roots of the polynomial

r(z)=z+_xz+xz-+... +(-- 1)xz+ ( 1)+b

over K. In case K=C they were also introduced by Ricci [12]. using
the notation from [8] or [3] or these polynomials, we have

k+l

(2.7) pl,g( b)= k u=kg( b)
i=l
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and

(2.8) P,l/(x b)= te u kg_n(X_ b).

Thus we can derive from Definition 2.1.

(2.9) P/(x b)= l--P(x b)P,/(x_ b)-Pn o(X b).
2

In order to de,he generalized Chebyshev polynomials o the second
kind we introduce the matrix m,n O elements u,,..., u+, in an exten-
sion L of K, where u,. .u+,= b e K.

[u+ +...

(2.10) ,= for m, n0.
U U U
U U Uk+

Let 5) denote the matrix which is obtained from H, by replacing

u by u; for i= 1, 2, ., k+ 1. Then we define polynomials over the
field K by

Definition 2.2. P,(; b)=(det ,)(det 0,0)-’
/ (; b)=(det :)(det

where the matrix , is given by (2.10) and =(x,...,
x,=a,(u, ., u+), lik+ l, and x,+=b e K.

-1/2Finally we generalize the polynomials D, (x, y) introduced in [3]
to the k-dimensional case.

Definition 2.. The polynomials _,,D-/ ,,(x) in k variables
(x, ..., x)= are given by the generating function

ml,...
m=O m=O

As orthogonal polynomials over R on the hypershpere x=l
i=l

(with weight function 1- x these polynomials could be regarded
i=l

as Chebyshev polynomials of the first kind in k variables. Polynomials,
of the second kind can be defined by replacing the numerator of the
generating function in Definition 2.3 by 1. Thus

Definition 2.4.

..,[)
,=o =o-"" (i- s,x,) + (i- xD( s)
3. Results. We use the notation =(x,...,x), introduced in

2. In Lemma 3.1 ’= (x, X_l, ", x).
Lemma 3.1. p-v [ P-l/r

_.,o, ;)=o,. , ) P22(8
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-,0 ;b)= ;b)=-,0w ;b
The esieio0 i Definitions .1 and 2. ae o eueial, be-

cause o
Lemma 3.2. --,0 0)= Pl/o(xl,, ..., x_l x)

Po(X; 0) pln
----,o"1, X_ X)

From (2.9) and Lemma 3.1 we have,

Lemma 3,3, P,(x;b) Pl/oZ( ,o, b)-- P;l_/,o(X; b)

Lemma 3.4.
k oPlg(x; b)s- N/

34
1 pzln rX_ N

,o,, b)t-k--o D_

where

(3.1) N/
i=O

(3.2) N_= (k+l--i)(--1)’b-’x+,_,t’
t=0

/+1

(3.3) D E (-- 1)xs
i=0

k+I

(3.4) D_
i=O

Theorem 3.5 (Generating Function).

P, (x b)st N+N_ M
o =o D D_

where (1--st)M=D+N_ +D.N+--(k+ 1)D+D_.
Theorem 3.6 (Recurrence Relation).

k+l
p-n

i=1

k+l
-/ for n> k,-’/’= b-’E (- 1)

i=1

where x+,=b, x0=l and the initial conditions are given by

p-/. ,,, D-1/.
,o (-- 1)’ .,,,,--,,o+ k(- 1)(k+ 1-m)x

i=l
for O_m_k

]O-1/2 ]D-1/2 +/-k(_l)(k+l m)b-lx/
i=1

for O<_m<_k.
and

In the special cases n=0, and b= 1 these results have been obtained
in [11] We list some of the polynomials P, (_x; b) of small degrees
for/ 2 and/ 3.
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k=2 k=3

Po1/" 6
p/ 2b-y
p&/ 2b-(y- 2bx)
Po/ 2x
PS/ b-(xy- 3b)
P5/ b-(xy-2bx"- by)
Po/ 2(x-2y)
P/ b-(xy 2y- bx)

12
3b-z
3b-(z-2by)
3x
b-(xz-4b)
b-(xz-2bxy- bz)
3(x- 2y)
b -(xz 2yz- bx)

P/ b-(xy-2y-2bx +4bxy-3b0 b-(xz- bxyz 2yz +4by-4bO

Generating functions nd recurrence relations for the generalized
Chebyshev polynomials pl/ of the second kind follow now. D and
D_ are as in Lemma 3.4.

Lemma 3.7 p:/ r, 1 1--,o-; b)t- and r/,. r--,o b)t-o D+ o D_

Theorem .8 (Generating Function).

p,(x b)st= 1--s.
=o =o D+D_

Theorem 3.9 (Recurrence Relation).
min (m,k +1)

1/ ,, (__ 1)-1_. p/
i=l

mln(n,k+l)
]01/2

=1

where

for m>l

for n>l

P/ b-xx 1]O1/2 1, P/ pl/2 b x and -,0,0 1,0--- Xl 0,1

We can see that for Imi>k the polynomials / satisfy the same re-
-/currence relation as --,o

/2 1/2Corollary 3.10. -,0 (-- 1) xP_,o
i=1

/ pi/2-_,0=E (-1)-b-%+- -+,0
i=1

for Omgk.
Lemma 11 Px/ // / / for m, n#O--mn mO-nO m-10 (n-0) 0

1 1/2
rain (re,k)

1/2Lemma .12. o, ( b)= =0 (k+ 1--i)(-- 1) xP_( b)

for mO.
We list some of the polynomials P/ of small degrees for k 2 and

k=3.
k=2 k=3

P/ I i
p1/ b-y b-z0,1

p1/. b-2(y- bx) b-2(z- by)0,2
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k=2 k=3

,o X
p/ b-(xy_b) b-(xz--b)1,1

P/ b-(xy- bx- by) b-(xz- bxy-- bz)
p1/. x x y2,0 Y
P/ b (xy y bx) b (xz yz2,1

P b-(-b ) b( bz +b bz)2,2

Finally we have the ollowing relationship between the polynomials
introduced in Definitions (2.3), (2.4) and (2.1), (2.2).

Theorem 3.13. --1/2 ,0(_X)__ 1 P,0 2x; 1-- x m:/:0,-’O,...,ml,...
j=l
j

1/2 ,0() p1/2 (2Xi;__X) miO"0..- m... mlO
j=l
ji


