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69. A Note on the Tate Conjecture for K3 Surfaces

By Takayuki OpA
Hokkaido University

(Communicated by Kunihiko KODAIRA, M. J. A., June 12, 1980)

This note discusses the openness of the image of the Galois group
in the second /4-adic cohomology of a K3 surface with large Picard
number defined over an algebraic number field. Especially, we prove
the Tate conjecture for a K3 surface, whose Picard number is 20 or 19.

Let X be a smooth projective geometrically irreducible surface
defined over an algebraic number field %, which satisfies the conditions:

2%,=0r and H(X,Oy=0.
Such a surface is called a K3 surface ([12]). The Picard number p of
X is defined by

p=dim, NS(X®k)®; Q,
where & is the algebraic closure of &, and NS(X®k) is the Néron-Severi
group of X®k. TFor any embedding of the field ¢ : k=—C, put
p,=dimy NS(X®,,, O)®, Q.
Then the equality p=p, holds.
The Betti numbers of X are given by

by=b,=1, b,=b,=0, b,=22.
Put p,=dimy, NS(X)®; Q, and assume that p,=p. We call i=b,—p
the Lefschetz number of X, which is the number of transcendental
cycles independent modulo algebraic cycles.

Now let us recall the Brauer group Br (X®k) of X®k. By
Grothendieck [1], it is known to be a torsion group, and the Tate
module T,(Br (X®Fk)) is given by the exact sequence of Gal (k/k)-modules

0—>NS(X)®Z,—> H: (X®F, Z[1])—>T (Br (X®k))—>0.
Here Z,[1] is the Tate twist.

Put V,=T,®; Q,. The intersection form on H(X®k,Q) is a
symmetric bilinear form with values in Q,[—2]. We denote by V,(T)
the orthogonal complement of NS(X)®, Q,[—1]. Then the restriction
of the intersection form to V(T) defines a non-degenerate bilinear form
with values in Q,[—2], and the above exact sequence induces an iso-
morphism of the Z-adic representations of Gal (k/k):

V(D)1= V (Br (X®k)).
Let us consider the ¢-adic representation
pr.e: Gal (k/k)—>Aut (V(T)).
By definition, 2=b,—p=dimg, V(T). Since the characteristic of % is
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zero, by Hodge theory and by the Lefschetz criterion of algebraic
cycles, we have 1=2 i.e. p<20.

To investigate p;,, we need the Kuga-Satake abelian varieties
attached to K3 surfaces.

Choose an embedding ¢: k=—>C. Then we denote by H*(X, Z) the
second Betti cohomology group of the complex analytic surface
(X®y,, O, Fix an ample invertible sheaf L on X, and let 4 € H%(X, Z)
be the Chern class of L. Let P,(X) be the orthogonal complement of
ZA in H:(X, Z), with respect to the intersection from on H*(X, Z). Let
C.(P,(X)) be the even Clifford algebra associated with the bilinear form
on P,X), which is the restriction of the intersection form. Then
Kuga-Satake [2] defined a structure of an abelian variety of dimension
2® on the real torus C.(P.(X)®, R/C.(P, (X)), which we denote by
A (X, L) or simply by A, (X).

In the proof of [4], Deligne proved the following results:

Theorem (cf. Proposition (6.5) of [4]). Let X be a K3 surface
over k. Then the abelian variety A, (X) has a model A defined over a
finite extension k' of k. Moreover there are a Z-algebra C=C ,(P (X)),
an injection of algebras: C—End, (4), and an isomorphism of £-adic
representations of Gal (k/k')

C.(P(X, Q)[1)—=> End, (H.(AR®Fk, Q).
Here P(X, Q) is the orthogonal complement of Z,A in H: (X®k, Q,) with
respect to £-adic intersection form, and C (P(X, Q)1]) is the even
Clifford algebra of P(X, Q)[1].

Let S be the image of NS(X®,,,C) in H*(X, Z), and let T be the
orthogonal complement of S in H*(X, Z) with respect to the intersec-
tion form on H%(X, Z). Clearly rank, T=2. Recall that the intersec-
tion form on H?*(X,Z) has the signature (3+,19—), and that the
restriction of this form to S has the signature (1+, (o—1)—) by the
index theorem of Hodge (cf. [12]). Therefore the restriction to T of
the intersection form defines a non-degenerated symmetric bilinear
form of the signature (2+,(A1—2)—) on T. T is naturally equipped
with the homogeneous Hodge structure of type {(2,0),(,1),(0,2)}.
And if we put T,=TQ®, C, we have

dim, T%'=dim, T%*=1 and dim, T4 =21—2.

By Satake [3], or by [4], we can define a structure of an abelian
variety of dimension 2°-* on the real torus C.(T"®; R/C.(T). Here
C.(T) is the even Clifford algebra associated with the intersection form
on T. We denote thig abelian variety by A%(X).

Note that, ag shown in the end of [3], the abelian variety 4 .(X) is
isogenous to the product of 2! copies of AZ(X), and that the endo-
morphism algebra End (A%7(X))®, Q is isomorphic to C.(1'®, Q. Since
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A, (X) is defined over an algebraic number field &/, A7(X) is also defined
over an algebraic number field k", which is a finite extension of %’.

Remark. If we consider the totality of K3 surfaces with a fixed
sublattice S of algebraic cycles in H%(X, Z), in place of all polarized
K3 surfaces, the methods of Deligne [4] are applicable to AZ(X), too.
So we can obtain an analogy of Theorem for AZ(X) directly.

(A) The Case p=20. 1=2 in this case. Therefore, A7(X) is one
dimensional abelian variety, and C.(T)®, @ is an imaginary quadratic
field. Accordingly, A%(X) is an elliptic curve with complex multipli-
cation. For abbreviation of notation, we denote this elliptic curve by
E. FE is defined over a certain algebraic number field ¥’ which is a
finite extension of k. There is a natural monomorphism of Gal (k/k')-
modules :

C.(1)Q; Ql-11—H., (ERL, Q)QHL (ERK, Q,).
Denote the cokernel of this monomorphism by V,(T’). Then, by
Theorem, we have an isomorphism of Gal (%, k’)-modules

VT)-=>V(T).
Hence the restriction of the representation p,, to Gal (k/k') is an
abelian /-adic representation, and for any finite extension k" of ¥/, the
invariant part V,(T)[1]¢4® " of the twist of V(T) is reduced to zero,
as conjectured by Tate [5].

Remark. Another method is given in the section 6 of Shioda-
Inose [6], which depends on the more precise study of K8 surfaces with
0=20.

Remark. We can obtain a more precise result. Namely we can
show that p, , is an abelian /-adic representation of Gal (k/k). It fol-
lows from the intersection form on rank 2 @,-module V (T), and from
the comparison theorem of Artin [7].

(B) The Case p=19. Let S be the sublattice H2(X, Z) generated
by the algebraic cycles on X. The restriction of the intersection form
to S defines a symmetric bilinear form of signature (14+,18—). We
denote by 4 the determinant of the matrix representing this bilinear
form. 4g defines an element of @*/(Q*)*. Two cases occur, according
as 4dg is a square of a rational number or not.

(B.1) The Case. dg=square, i.e. dsec (Q*)?. By the Poincaré
duality, the intersection form is unimodular, and its signature is
(8+4,19—). Therefore we have

dg-d,=—1 mod (@*)*.
In this case the quaternion algebra C,(T)&Q, Q over Q is isomorphic to

the matrix algebra M,(Q). Thus, by Satake [3], A7(X) is isogenous to
the product E' X E of an elliptic curve E without complex multiplica-
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tion.® E is defined over a certain finite extension %’ of k. By Theo-
rem, we have an isomorphism of Gal (k/k’)-modules :

V(T)-—~>Symm?* H. (EQFk, Q,).

Here Symm? means the symmetric tensor product of degree 2. By the
results of Serre [8], [9], for any finite extension %" of ¥/, the invariant
part V,(T)[1]6%®*" ig zero. Thus we have verified the Tate conjecture.

(B.2) The Case 45 & (QF)*. In this case, the quaternion algebra
C.(T®, Q is an indefinite division algebra. Thus, by [3], A7(X) is a
simple abelian variety of dimension two. It is known that the rank
of the Néron-Severi group A7(X) is three. By Theorem, A?(X) has a
model A defined over a certain finite extension &’ of k£, and we have an
isomorphism of Gal (k/k'):

VAT)-=>Hi (A®K, Q)| (NS(A®K®, QL—1D).
By the results of Ohta [10] on the ¢-adic representation on H} (A®Fk, Q)
of a go-called “false elliptic curve” A, we can readily check that the
invariant part V,(T)[1]9®*" is reduced to zero for any finite extension
k" of k. Thus the Tate conjecture is true in this case too.

(C) A few words for the case p=18. This case is also divided
into two cases, according as 4, is a square or not.

(C.1) When 4, is a square of a rational number, A%(X) is iso-
genous to the product E, X E, X E,X E, by [3]. Here F, and E, are non-
isogenous two elliptic curves. For a certain finite extension &’ of k&
containing the fields of definition of £, and F,, we have an isomorphism :

VT)—~>H,(E &k, @)@H‘ét(&@l& Q)
of the ¢-adic representations of Gal (k/k').

Thus the validity of the Tate conjecture in this case is equivalent
to the following:

For any finite extension k” of K, the Gal(k/k")-module
H (E,QFk, Q) is not isomorphic to Hy (E,Qk, Q,).

This seems to be still an open problem for general E,, E,. See the
end of [9].

(C.2) When 4, is not square, Q(v/4,) is a real quadratic field,
because 4, is positive. In this case, C,(T)®, Q is a matrix algebra
M,(QW4y). By [3], A7(X) is isogenous to the product A X A of a two
dimensional abelian variety A with real multiplication Q(v4;). We
can find a sufficient large finite extension %’ of k, such that A is defined
over k' and such that the rank of NS(A®FK') is equal to 2. Hence
Theorem implies an isomorphism :

VAD)—=>H(AQF, Q) NS(ARK)QQ,[—1]

*  The fact that A,(X) is isogenous to the product of 2*° copies of an elliptic
curve was suggested by Kuga several years ago. I would like to thank him.
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of the ¢-adic representations of Gal (k/k’). Unfortunately the results
of Ribet [11] is insufficient to assure the Tate conjecture without ir-
relevant conditions.

We can treat the case p<17 similarly. But for such case, it seems
that the necessary results for ¢-adic representation of the correspond-
ing abelian varieties is not known.

As a generalization of [6], we can expect the following fact (open
problem).

For any K3 surface X with p=18, or with p=17 and 45 e (@*),
there exist an abelian variety A of dimension two and an algebraic
correspondence » of X to the Kummer surface Km (4), such that +
induces an isomorphism of V,(Br (X®k)) to V,(Br (AR®k)) and an iso-
morphism (with Hodge structure of) T®; Q to {the module of trans-
cendental cycles of A}, Q.
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