59. A Note on Quasilinear Eqolution Equations

By Kiyoko Furuya
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, M. J. A., June 12, 1980)

§ 1. Introduction. In this note we give a generalization of the result of Massey [2] who proved analyticity in t of solutions to quasilinear evolution equations

$$
\begin{gather*}
\frac{d u}{d t}+A(t, u) u=f(t, u), \quad 0 \leqq t \leqq T \tag{1.1}\\
u(0)=u_{0} \tag{1.2}
\end{gather*}
$$

The unknown, u, is a function of t with values in a Banach space X. For fixed t and $v \in X$, the linear operator $-A(t, v)$ is the generator of an analytic semigroup in X and $f(t, v) \in X$. We consider the equation (1.1) under the assumption that the domain $D\left(A(t, u)^{h}\right)$ of $A(t, u)^{h}$ is independent of t, u for some $h>0$, while Massey discussed it in the case that $D(A(t, u))$ is constant.

In the following $L(X, Y)$ is the space of linear operators from normed space X to normed space Y, and $B(X, Y)$ is the space of bounded linear operators from normed space X to normed space Y. $L(X)=L(X, X)$ and $B(X)=B(X, X)$. \|\| will be used for the norm in both X and $B(X)$.

The author wishes to express her hearty thanks to Prof. Y. Kōmura for his kind advices and encouragements.
§ 2. The main result. We shall make the following assumptions :
A-1 $\left.{ }^{\circ}\right) \quad u_{0} \in D\left(A_{0}\right)$ and $A_{0}^{-\alpha}$ is a well-defined operator $\in B(X)$ where $A_{0} \equiv A\left(0, u_{0}\right)$.

A-2 ${ }^{\circ}$) There exist $h=1 / m$, where m is an integer, $m \geqq 2, R>0$, $T_{0}>0, \phi_{0}>0$ and $0 \leqq \alpha<h$, such that $A\left(t, A_{0}^{-\alpha} w\right)$ is a well-defined operator $\in L(X)$ for each $t \in \Sigma_{0} \equiv\left\{t \in C ;|\arg t|<\phi_{0}, 0 \leqq|t|<T_{0}\right\} \quad$ and $\quad w \in N$ $\equiv\left\{w \in X ;\left\|w-A_{0}^{\alpha} u_{0}\right\|<R\right\}$.

A- 3°) For any $t \in \Sigma_{0}$ and $w \in N$
(2.1) $\left\{\begin{array}{l}\text { the resolvent of } A\left(t, A_{0}^{-\alpha} w\right) \text { contains the left half-plane and } \\ \text { there exists } C_{1} \text { such that }\left\|\left(\lambda-A\left(t, A_{0}^{-\alpha} w\right)\right)^{-1}\right\| \leqq C_{1}(1+|\lambda|)^{-1} .\end{array}\right.$

A- 4°) The domain $D\left(A\left(t, A_{0}^{-\alpha} w\right)^{h}\right)=D$ of $A\left(t, A_{0}^{-\alpha} w\right)^{h}$ is independent of $t \in \Sigma_{0}$ and $w \in N$.

A- 5°) The map $\Phi:(t, w)_{\mapsto} A\left(t, A_{0}^{-\alpha} w\right)^{h} A_{0}^{-h} \quad$ is analytic from $\left(\Sigma_{0} \backslash\{0\}\right) \times N$ to $B(X)$.

A- 6°) There exist $C_{2}, C_{3}, \sigma, 1-h<\sigma \leqq 1$ such that

$$
\begin{equation*}
\left\|A\left(t, A_{0}^{-\alpha} w\right)^{h} A\left(s, A_{0}^{-\alpha} v\right)^{-h}\right\| \leqq C_{2} \quad t, s \in \Sigma_{0}, w, v \in N \tag{2.2}
\end{equation*}
$$

$$
\begin{align*}
\left\|A\left(t, A_{0}^{-\alpha} w\right)^{h} A\left(s, A_{0}^{-\alpha} v\right)^{-h}-I\right\| \leqq C_{s}\left\{t-\left.s\right|^{\sigma}+\|w-v\|\right\} \tag{2.3}\\
t, s \in \Sigma_{0}, w, v \in N .
\end{align*}
$$

A- $\left.7^{\circ}\right) \quad f\left(t, A_{0}^{-\alpha} w\right)$ is defined and belongs to X for each $t \in \Sigma_{0}$ and $w \in N$, and there exists C_{4} such that

$$
\begin{align*}
\left\|f\left(t, A_{0}^{-\alpha} w\right)-f\left(s, A_{0}^{-\alpha} v\right)\right\| \leqq C_{4}\left\{|t-s|^{\sigma}+\|w-v\|\right\} \tag{2.4}\\
t, s \in \Sigma_{0}, w, v \in N .
\end{align*}
$$

A- $\left.8^{\circ}\right) \quad$ The $\operatorname{map} \Psi:(t, w) \mapsto f\left(t, A_{0}^{-\alpha} w\right)$ is analytic from $\left(\Sigma_{0} \backslash\{0\}\right) \times N$ into X.

These constants $C_{i}(i=1,2,3,4)$ do not depend on t, s, w, v.
Theorem. Let the assumptions A-1 ${ }^{\circ}$)-A- 8°) hold. Then there exist $T, 0<T \leqq T_{0}, \phi, 0<\phi \leqq \phi_{0}, K>0, k, 1-h<k<1$ and a unique continuous function u mapping $\Sigma \equiv\{t \in C ;|\arg t|<\phi, 0 \leqq|t|<T\}$ into X such that $u(0)=u_{0}, u(t) \in D(A(t, u(t)))$ and $\left\|A_{0}^{\alpha} u(t)-A_{0}^{\alpha} u_{0}\right\|<R$ for $t \in \Sigma \backslash\{0\}$, $u: \Sigma \backslash\{0\} \rightarrow X$ is analytic, $d u / d t+A(t, u(t)) u(t)=f(t, u(t))$ for $t \in \Sigma \backslash\{0\}$, and $\left\|A_{0}^{\alpha} u(t)-A_{0}^{\alpha} u_{0}\right\| \leqq K|t|^{k}$ for $t \in \Sigma$.

The sketch of the proof is given in §3. The complete proof of our result will be published elsewhere.
§3. Sketch of proof. We first restrict t to be real. We introduce sets $Q(s, L, k)$. Here k is any number satisfying $1-h<k<\min \{1-\alpha, \sigma\}$ and L is any positive number. A function $v(t)$, defined for $0 \leqq t \leqq s$, is said to belong to $Q(s, L, k)$ if $v(0)=A_{0}^{\alpha} u_{0}$ and if $\left\|v\left(t_{1}\right)-v\left(t_{2}\right)\right\| \leqq L\left|t_{1}-t_{2}\right|^{k}$ for any t_{1}, t_{2} in $[0, s]$. Then for sufficiently small positive s and for all $t \in[0, s]$, we get $\|v(t)\|<R$ for any function $v(t) \in Q(s, L, k)$. Hence the operator $A_{v}(t)=A\left(t, A_{0}^{-\alpha} v(t)\right)$ is well defined for $t \in[0, s]$. Set $f_{v}(t)$ $=f\left(t, A_{0}^{-\alpha} v(t)\right)$ and $w_{v}(t)=A_{0}^{\alpha} w(t)$, where w is the unique solution of

$$
\left\{\begin{array}{l}
d w / d t+A_{v}(t) w=f_{v}(t), \quad t \in[0, s] \\
w(0)=u_{0} .
\end{array}\right.
$$

Then using the linear theory of Kato [1], we get $w_{v} \in Q(s, L, k)$ for sufficiently small s.

We set $F=Q(s, L, k)$ and define a transformation $w_{v}=T v$ for $v \in F$. Then T maps F into itself. By some calculations we can prove the following key fact: If s is small enough, there exists $0<\theta<1$ such that for any $v_{1}, v_{2} \in F$ the inequality $\left|\left\|T v_{1}-T v_{2}\right\|\right| \leqq \theta\left|\left\|v_{1}-v_{2}\right\|\right|$ holds (where $\mid\|v\|\left\|=\sup _{0 \leq t \leq s}\right\| v(t) \|$). So by the fixed point theorem there exists a unique point v in F such that $T v=v$. Then $u=A_{0}^{-\alpha} v$ is a unique solution of (1.1), (1.2) which is continuously differentiable for $0<t$ $\leqq s$, continuous for $0 \leqq t \leqq s$.

Next we shall show that u is extensible analytically in t to a sector Σ. From (2.1) there are constants $C_{4}, \phi_{1}>0, T_{1}>0$ such that for $t \in \Sigma_{1}$, $w \in N$ and $|\theta|<\phi_{1}$ the resolvent of $e^{i \theta} A\left(t, A_{0}^{-\alpha} w\right)$ contains the left plane and

$$
\left\|\left(\lambda-e^{i \theta} A\left(t, A_{0}^{-\alpha} w\right)\right)^{-1}\right\| \leqq C_{4}(1+|\lambda|)^{-1} \quad \operatorname{Re} \lambda \leqq 0
$$

where $\Sigma_{1} \equiv\left\{t \in \boldsymbol{C} ;|\arg t|<\phi_{1}, 0 \leqq|t|<T_{1}\right\}$. We let $\phi=\min \left\{\phi_{0}, \phi_{1}\right\}$, and in (1.1) and (1.2) we make the change of variable $t=\tau e^{i \theta}, \tau \in\left[0, T_{1}\right],|\theta|<\phi$, so equations (1.1) and (1.2) become

$$
\left\{\begin{array}{l}
\partial v / \partial \tau+e^{i \theta} A\left(\tau e^{i \theta}, v\right) v=e^{i \theta} f\left(\tau e^{i \theta}, v\right), \tag{3.1}\\
v\left(0, e^{i \theta}\right)=u_{0}
\end{array}\right.
$$

where $v\left(\tau, e^{i \theta}\right)=u\left(\tau e^{i \theta}\right)$ and $u(t)=v(|t|, t /|t|)$.
We hold $|\theta|<\phi$ fixed and apply the argument about real t to equation (3.1). Then there exist $T, 0<T \leqq \min \left\{T_{0}, T_{1}\right\}$ and a unique solution $v\left(\tau, e^{i \theta}\right)$ of (3.1) defined for $\tau \in[0, T],|\theta|<\phi . \quad$ Let $\Sigma \equiv\{t \in C ;|\arg t|<\phi$, $0 \leqq|t|<T\}$ and

$$
\left\{\begin{array}{l}
u(t)=v(|t|, t /|t|), \quad t \in \Sigma \backslash\{0\} \tag{3.2}\\
u(0)=u_{0}
\end{array}\right.
$$

We can easily prove that u satisfies the conclusions of Theorem.

References

[1] T. Kato: Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J., 5, 93-125 (1961).
[2] F. J. Massey, III: Analyticity of solutoins of nonlinear evolution equations. J. Diff. Eqs., 22, 416-427 (1976).

