82. On Certain Densities of Sets of Primes

By Leo Murata
Department of Mathematics, Faculty of Science,
Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1980)

Let \mathscr{P} be the set of all rational primes and M a non-empty subset of \mathcal{P}. For a pair of real numbers (α, β), where either $\alpha=0$ and $\beta \geqq 0$ or $\alpha>0$ (β arbitrary), and for positive x, put $f_{\alpha, \beta}(x)=x^{\alpha-1}(\log x)^{\beta}$. We put furthermore

$$
\begin{aligned}
& \pi_{\alpha, \beta}(M, x)=\sum_{p \in \in, p \leq x} f_{\alpha, \beta}(p), \\
& d_{\alpha, \beta}(M, x)=\frac{\pi_{\alpha, \beta}(M, x)}{\pi_{\alpha, \beta}(\mathscr{P}, x)}, \\
& \underline{D}_{\alpha, \beta}(M)=\liminf _{x \rightarrow \infty} d_{\alpha, \beta}(M, x), \\
& \bar{D}_{\alpha, \beta}(M)=\lim _{x \rightarrow \infty} \sup d_{\alpha, \beta}(M, x) .
\end{aligned}
$$

When $\underline{D}_{\alpha, \beta}(M)=\bar{D}_{\alpha, \beta}(M)$, we denote this value by $D_{\alpha, \beta}(M)$ and say that M has the (α, β)-density $D_{\alpha, \beta}(M)$. The natural density is nothing other than (1,0)-density and, as is well-known, the Dirichlet density is equal to (0,0)-density (cf. [1]).

We shall say that (α, β)-density is stronger than (γ, δ)-density, and write $D_{r, \delta}<D_{\alpha, \beta}$, if the existence of $D_{\alpha, \beta}(M)$ for $M \subset \mathscr{P}$ implies the existence of $D_{r, \delta}(M)$ and, when these densities exist, their values are the same (\prec is obviously an order relation). If $D_{\alpha, \beta} \prec D_{r, \delta}$ and $D_{r, \delta}<D_{\alpha, \beta}$, we say that both densities are equivalent and write $D_{\alpha, \beta} \sim D_{\gamma, \delta}(\sim$ is clearly an equivalence relation).

Our main theorem states:
Theorem 1. Any of our (α, β)-densities is equivalent to one of the three densities, $D_{0,0}, D_{0,1}, D_{1,0}$, which will be denoted by d_{0}, d_{1}, d_{2}, respectively. We have furthermore $d_{0} \prec d_{1} \prec d_{2}$ and these three densities are inequivalent.

As noted above, d_{0} and d_{2} are Dirichlet density and natural density, respectively. It is known that $d_{0} \prec d_{2}$ (cf. [1]). Our theorem shows that the density d_{1} lies, so to speak, between the two.

The following theorem gives a more precise form of the first part of Theorem 1.

Theorem 2. For any $\beta>0, D_{0, \beta}$ is equivalent to $d_{1}=D_{0,1}$ and for any $\alpha>0$ and any $\beta, D_{\alpha, \beta}$ is equivalent to $d_{2}=D_{1,0}$.

Sketch of proof of Theorem 2. It is easily shown that

$$
\pi_{\alpha, \beta}(\mathscr{P}, x)= \begin{cases}\left\{\frac{1}{\alpha}+o(1)\right\} \alpha^{\alpha}(\log x)^{\beta-1} & \text { if } \alpha>0 \\ \left\{\frac{1}{\beta}+o(1)\right\}(\log x)^{\beta} & \text { if } \alpha=0, \beta>0\end{cases}
$$

Thus $D_{\alpha, \beta}(M)$ will exist and be equal to μ, if and only if

$$
\pi_{\alpha, \beta}(M, x)= \begin{cases}\left\{\frac{\mu}{\alpha}+o(1)\right\} x^{\alpha}(\log x)^{\beta-1} & \text { if } \alpha>0 \tag{*}\\ \left\{\frac{\mu}{\beta}+o(1)\right\}(\log x)^{\beta} & \text { if } \alpha=0, \beta>0\end{cases}
$$

In the following, we shall limit ourselves to the second part of Theorem 2, as the first part can be proved similarly. Thus we shall suppose $\alpha>0, \gamma>0$, and prove $D_{\gamma, \delta}<D_{\alpha, \beta}$. Then interchanging the roles of (α, β) and (γ, δ), we obtain $D_{\alpha, \beta} \sim D_{r, \delta}$.

From the assumption that $D_{\alpha, \beta}(M)$ exists, i.e. that the first formula of (*) holds true, we can deduce by partial summation and some computations:

$$
\pi_{r, \delta}(M, x)=\left\{\frac{\mu}{\gamma}+o(1)\right\} x^{\gamma}(\log x)^{\delta-1}
$$

$D_{r, \delta}(M)$ exists then and is equal to μ.
Sketch of proof of Theorem 1. Since the relation $d_{0} \prec d_{1} \prec d_{2}$ can be similarly proved to the above, it suffices to show that d_{0} and d_{1} are inequivalent and so are also d_{1} and d_{2}. This is done by the following two examples.

Example 1. Put

$$
M^{*}=\bigcup_{n=0}^{\infty}\left\{p \in \mathscr{P} ; \exp \left((2 n)^{2}\right)<p \leqq \exp \left((2 n+1)^{2}\right)\right\} .
$$

Then we can prove $D_{0,1}\left(M^{*}\right)=1 / 2$, whereas $\underline{D}_{1,0}\left(M^{*}\right)=0, \bar{D}_{1,0}\left(M^{*}\right)=1$.
Example 2. Put

$$
M^{* *}=\bigcup_{n=0}^{\infty}\{p \in \mathscr{P} ; \exp (\exp (2 n))<p \leqq \exp (\exp (2 n+1))\}
$$

Then we can prove $D_{0,0}\left(M^{* *}\right)=1 / 2$, whereas

$$
\underline{D}_{0,1}\left(M^{* *}\right) \leqq \frac{1}{e+1}, \quad \bar{D}_{0,1}\left(M^{* *}\right) \geqq \frac{e}{e+1}
$$

Remark. We can show that $D_{1,0}(M)$ (and consequently $D_{\alpha, \beta}(M)$ for any (α, β) treated here) can take any value of $[0,1]$. In fact, the natural density $D_{1,0}(M)$ takes every rational value by Dirichlet's theorem on arithmetic progressions. For irrational μ, take a sequence of positive integers $a_{\nu}, b_{\nu}(\nu=0,1,2, \cdots)$ satisfying $a_{\nu}>\exp \left(\alpha_{\nu-1}\right), \varphi\left(a_{\nu}\right)$ $\geqq b_{\nu}$, and $\lim _{\nu \rightarrow \infty} b_{\nu} / \varphi\left(a_{\nu}\right)=\mu$, where $\varphi(n)$ denotes Euler's function. For each a_{ν}, take b_{ν} integers $t_{j}^{(\nu)}\left(j=1,2, \cdots, b_{\nu}\right)$ which are co-prime to a_{ν} such that $1 \leqq t_{j}^{(\nu)}<a_{\nu}$. Put

$$
M=\bigcup \bigcup\left\{p \in \mathscr{P} ; \exp \left(a_{\nu}\right)<p \leqq \exp \left(a_{\nu+1}\right), p \equiv t_{j}^{(\nu)}\left(\bmod \alpha_{\nu}\right)\right\}
$$

Then it can be shown that $D_{1,0}(M)=\mu$.
Complete proofs are to appear elsewhere.

Reference

[1] H.-H. Ostmann: Additive Zahlentheorie. Bde. I and II, Springer (1956).

