82. On Certain Densities of Sets of Primes

By Leo MURATA

Department of Mathematics, Faculty of Science, Tokyo Metropolitan University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1980)

Let \mathcal{P} be the set of all rational primes and M a non-empty subset of \mathcal{P} . For a pair of real numbers (α, β) , where either $\alpha = 0$ and $\beta \ge 0$ or $\alpha > 0$ (β arbitrary), and for positive x, put $f_{\alpha,\beta}(x) = x^{\alpha-1}(\log x)^{\beta}$. We put furthermore

$$egin{aligned} \pi_{lpha,eta}(M,x) &= \sum\limits_{p\in M,\ p\leq x} f_{lpha,eta}(p), \ d_{lpha,eta}(M,x) &= rac{\pi_{lpha,eta}(M,x)}{\pi_{lpha,eta}(\mathcal{Q},x)}, \ \underline{D}_{lpha,eta}(M) &= \lim\limits_{x o\infty} d_{lpha,eta}(M,x), \ \overline{D}_{lpha,eta}(M) &= \limsup\limits_{x o\infty} d_{lpha,eta}(M,x). \end{aligned}$$

When $\underline{D}_{\alpha,\beta}(M) = \overline{D}_{\alpha,\beta}(M)$, we denote this value by $D_{\alpha,\beta}(M)$ and say that M has the (α, β) -density $D_{\alpha,\beta}(M)$. The natural density is nothing other than (1, 0)-density and, as is well-known, the Dirichlet density is equal to (0, 0)-density (cf. [1]).

We shall say that (α, β) -density is *stronger* than (γ, δ) -density, and write $D_{\gamma,\delta} \prec D_{\alpha,\beta}$, if the existence of $D_{\alpha,\beta}(M)$ for $M \subset \mathcal{P}$ implies the existence of $D_{\gamma,\delta}(M)$ and, when these densities exist, their values are the same (\prec is obviously an order relation). If $D_{\alpha,\beta} \prec D_{\gamma,\delta}$ and $D_{\gamma,\delta} \prec D_{\alpha,\beta}$, we say that both densities are *equivalent* and write $D_{\alpha,\beta} \sim D_{\gamma,\delta}$ (\sim is clearly an equivalence relation).

Our main theorem states:

Theorem 1. Any of our (α, β) -densities is equivalent to one of the three densities, $D_{0,0}, D_{0,1}, D_{1,0}$, which will be denoted by d_0, d_1, d_2 , respectively. We have furthermore $d_0 \leq d_1 \leq d_2$ and these three densities are inequivalent.

As noted above, d_0 and d_2 are Dirichlet density and natural density, respectively. It is known that $d_0 < d_2$ (cf. [1]). Our theorem shows that the density d_1 lies, so to speak, between the two.

The following theorem gives a more precise form of the first part of Theorem 1.

Theorem 2. For any $\beta > 0$, $D_{0,\beta}$ is equivalent to $d_1 = D_{0,1}$ and for any $\alpha > 0$ and any β , $D_{\alpha,\beta}$ is equivalent to $d_2 = D_{1,0}$.

Sketch of proof of Theorem 2. It is easily shown that

L. MURATA

$$\pi_{\alpha,\beta}(\mathcal{P},x) = \begin{cases} \left\{\frac{1}{\alpha} + o(1)\right\} x^{\alpha} (\log x)^{\beta-1} & \text{ if } \alpha > 0, \\ \left\{\frac{1}{\beta} + o(1)\right\} (\log x)^{\beta} & \text{ if } \alpha = 0, \beta > 0 \end{cases}$$

Thus $D_{\alpha,\beta}(M)$ will exist and be equal to μ , if and only if

$$(*) \qquad \pi_{\alpha,\beta}(M,x) = \begin{cases} \left\{\frac{\mu}{\alpha} + o(1)\right\} x^{\alpha} (\log x)^{\beta-1} & \text{if } \alpha > 0, \\ \left\{\frac{\mu}{\beta} + o(1)\right\} (\log x)^{\beta} & \text{if } \alpha = 0, \beta > 0 \end{cases}$$

In the following, we shall limit ourselves to the second part of Theorem 2, as the first part can be proved similarly. Thus we shall suppose $\alpha > 0$, $\gamma > 0$, and prove $D_{\gamma,\delta} < D_{\alpha,\beta}$. Then interchanging the roles of (α, β) and (γ, δ) , we obtain $D_{\alpha,\beta} \sim D_{\gamma,\delta}$.

From the assumption that $D_{\alpha,\beta}(M)$ exists, i.e. that the first formula of (*) holds true, we can deduce by partial summation and some computations :

$$\pi_{\gamma,\delta}(M, x) = \left\{\frac{\mu}{\gamma} + o(1)\right\} x^{\gamma} (\log x)^{\delta^{-1}}.$$

 $D_{r,\delta}(M)$ exists then and is equal to μ .

Sketch of proof of Theorem 1. Since the relation $d_0 \prec d_1 \prec d_2$ can be similarly proved to the above, it suffices to show that d_0 and d_1 are inequivalent and so are also d_1 and d_2 . This is done by the following two examples.

Example 1. Put

$$M^* = \bigcup_{n=0}^{\infty} \{ p \in \mathcal{P} ; \exp \left((2n)^2 \right)$$

Then we can prove $D_{0,1}(M^*)=1/2$, whereas $\underline{D}_{1,0}(M^*)=0$, $\overline{D}_{1,0}(M^*)=1$. Example 2. Put

$$M^{**} = \bigcup_{n=0}^{\infty} \{ p \in \mathcal{P} ; \exp(\exp(2n))$$

Then we can prove $D_{0,0}(M^{**}) = 1/2$, whereas

$$\underline{D}_{0,1}(M^{**}) \leq \frac{1}{e+1}, \qquad \overline{D}_{0,1}(M^{**}) \geq \frac{e}{e+1}$$

Remark. We can show that $D_{1,0}(M)$ (and consequently $D_{\alpha,\beta}(M)$ for any (α, β) treated here) can take any value of [0, 1]. In fact, the natural density $D_{1,0}(M)$ takes every rational value by Dirichlet's theorem on arithmetic progressions. For irrational μ , take a sequence of positive integers a_{ν}, b_{ν} ($\nu = 0, 1, 2, \cdots$) satisfying $a_{\nu} > \exp(a_{\nu-1}), \varphi(a_{\nu}) \ge b_{\nu}$, and $\lim_{\nu \to \infty} b_{\nu}/\varphi(a_{\nu}) = \mu$, where $\varphi(n)$ denotes Euler's function. For each a_{ν} , take b_{ν} integers $t_{j}^{(\nu)}$ ($j=1, 2, \cdots, b_{\nu}$) which are co-prime to a_{ν} such that $1 \le t_{j}^{(\nu)} < a_{\nu}$. Put

$$M = \bigcup \{ p \in \mathcal{P} ; \exp (a_{\nu})$$

Then it can be shown that $D_{1,0}(M) = \mu$. Complete proofs are to appear elsewhere.

No. 7]

Reference

[1] H.-H. Ostmann: Additive Zahlentheorie. Bde. I and II, Springer (1956).