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On Certain Numerical Invariants of Mappings
over Finite Fields. I

By Takashi ON0
Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi IYANAG., M. Z. .., Sept. 12, 1980)

Introduction. Let X be a finite set, Y be a vector space over
finite field K--Fq and F be a mapping XY. Using a non-trivial
multiplicative character of K, we shall define invariants P(Z) and
a(), and prove a simple relation (1.11) between them. If dim Y-1,
then P(Z) is nothing but the sq.uare of the absolute value of the char-
acter sum

SF(Z,)-- z(F(x)).
xX

When X is also a vector space over K, F is a quadratic mapping and

Z is a quadratic character, then the computation of a() is generally
much easier than that o p().*) On the other hand, when the degree
o a polynomial mapping F is higher than 2, then, even in the case o
the quadratic character, a() involves usually difficult ingredients such
as the trace of the Frobenius endomorphism however, there are cases
where p(Z)can be computed easily. In such a case, we can use the
equality (1.11) to get some informations about the ingredients of a().
We shall discuss here a simple example of this type.

1. Statement of a theorem. Let K be the finite field with q
elements" K-Fq and ) be a non-trivial character of the multiplicative
groupKofK. We extend z to K by putting Z(0)---0. Let Xbe a
finite set, Y be a vector space over K of finite dimension m:> 1 and F
be any mapping X-+Y. For non-zero vectors u, v e Y, we write ullv
when they are propotional to each other, i.e. when there is an a e K
such that v--au. When that is so, we write a--v" u. Hence, we have
(u’v)(v’u)--I and ;(u’v)-2.(v’u) where is the complex conjugate
of Z. Denote by P the set of pairs (x, y) e X such that F(x)=/==O, F(y)
=/=0 and F(x)[IF(y). In this paper, we shall be interested in the number

(1.1) pF(Z)- z(F(x)’F(y)).
(x,y) P

(1.2) Remark. When P is empty, i.e. when F(x)=0 for all x e X,
we simply put p(Z)=0.

(1.3) Remark. P(Z) is an invariant in the sense that, or another

*) In the second paper of the same title as this one, we. shall obtain explicit
values of the invariants for quadratic mappings arising from pairs of quadratic
forms, algebras with involution, Hopf maps, etc.
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mapping G" X-+Y, and have p(Z)=p(z) whenever we have a relation
Ga= flF where a is a bijection of the set X with itself and is an auto-
morphism of the vector space Y.

(1.4) Remark. When re=l, for u0, re0 in Y=K, we have
always u]]v and (u" v)=(u)2(v). Hence, (1.1) becomes

where
(1.5) Z()= z(r(x)),

X

the character sum of the function F" XK.
Back to a general mapping F" XY, denote by Y* the dual space

of Y. For each 2 e Y*, we get a function F" XK by putting
F(x)=(F(x)).

Using (1.5), we put
(1.6) Az)= s(z).

Y*

(1.7) Remark. a(Z) is an invarint in the sme sense as (1.3).
(1.8) Remark. When F(x)=0 or all x e X, we have a(Z)=0.
(1.9) Remark. When re=l, by (1.4), (1.6), we have
(.0) A) (q-)A).
In the general case, we shall prove the following
(1.11) Theorem. a()=q-(q--1)p(Z), re=dim Y.
2. Proof of the theorem. We begin with a lemma"

(2.1) Lemma. Let V be a vector space over K=Fq of dimension

r1 and , be non-zero linear forms on V" , V e V*. Then, we have

Proof. Assume first that # [. Hence, we have $=c, c=#’.
We have then

Z((x))2((x))=Z(c) Z((x))=Z(c) l=Z(c)(q--qr-),
x V x V (x)O

since Ker contains q- elements. Next, assume that #. Since
then Ker # and Ker span V, we have dim (Ker # Ker ) r-- 2. One
can find a basis {e, ..., e} of V such that the first r-2 e,’s span Ker
Ker and that (e_)=(e)=l, (e)=(e_)=O. Write a vector
xeVasx=xe+...+xe,x, eK. Then, wehave

Ez(#(x))z(v(x))= E z(x_)(x)
x V (x,... ,xr)

since Z is non-trivial. Q.E.D.
Proof of (1.11). From (1.6), it ollows that

(Z) IS(Z)l= E z(F(x))(r(y))
Y* Y* (xy)X

Z((r(x)))((r(y))),
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where we only have to sum over (x, y) such that F(x)=/=O, F(y)=/=O. By
applying (2.1) to the inner sum, with V-Y*, x=2, =F(x), ]=F(y)
and r=m, we have, Z((F(x)))2((F(y)))= (Oq, if F(x) 4F(y),
er, -(q--1)(F(x)" F(y)), if. F(x) F(y),

and so
a(z)=q-(q-1) 7,(F(x) F(y)),

(x,y) P

which proves (1.11).
(2.2) Remark. Notation being as above, let L be an injective

linear mapping of Y into another vector space Z over K. We may
then speak of po(Z) and ao(Z). By definition (1.1), since L is injec-
tive, we see easily that po()=p() which shows that p,,(;0 is inde-
pendent of the embedding of the image of the mapping F. As for
a(Z), by (1.11) we get

a.()=q-a(;O, where/=dim Z.
3. An application. Let K=Fq, q" odd. In this section, we

consider only quadratic character Z. Since there is only one such
character, we simply write p,a instead of pr(),a(), respectively.
Let X be the field K and f be a function K-K. Since takes values
_+ 1, the character sum

(3.1) S- , z(f(x))
xK

is an integer. Denote by N the number of solutions (x, y) e K of the
equation

y-f(x).
Since, or each x e X, the number of y’s is l+z(f(x)), we have

(3.2) N= q-t- S.
The ollowing formulas of S or linear and quadratic functions on
X=K are well-known and easy to prove.

(3.3) S= . z(ax+b)={O’ if a=/=O,
xe: qz(b), if a=O.

z(a), if b 4ac :/:: O,(3.4) S- (ax+bx+c)=[z(a)(q-1), if. b-4ac O.xK

From now on, we assume that q is not divisible by 3, too.
Consider the mapping F" K-K given by
(3.5) F(x)=(x, x, 1).

Identifying the linear form e (K)* wih 2 =(a, , ) e K, we have
F(x) =ox +x+

From (3.5), we have
F(x)llF(y),:::x=y, x, y e K.

Therefore, by (1.1), (1.11), we have
(3.6) pr--q, a-- S--q(q-1).
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(resp. 4fl +27a, 0),
(3.9) A-- /o,

Then we have

When a=0, we have, by (3.3),
o, i o,

SF= , Z(/x+’)= qz(’), if =0, ,=/=0,.
xe (0, if fl=’=O,

and so ---o S=q2(q 1). Then, from (3.6), we get
(3.7) , S--q2(q-1)2.

As for the terms for which ave0, we split the sum (3.7) into two
parts

(3.8) , S (I) + (II),
a:/=0

where (I) (resp. (II)) is the sum over =(a, fl, ) with 4+27a,=/=0
For 2 (a, fl, ’), a ve 0, we put

B=,/o, z/=4A+27B.
and it ollows that

S z(a) , Z(x +Ax+B)
xK

(3.10) (II) (q- 1)(II)* with (II)* , z(x4-Ax+B)
(A, B) K

z=0

Since , z(x)=, z(x)=0 and =0, we may assume that AC0, Be0
in (3.10). The condition =4A+27B=0 implies that z(A)=z(-3)
and that

(3.11) A=-3C, B= +2C for some C e K.
Therefore, we have

(II)* z(x-3Cx+2C)
C0

z((z- c)(x+2C))
C0

Since we have c Z(x+2C) Z(x+2C)- z(3C) z(3C), we get.
(II)*=(q-1). In view of (3.8), (3.10), we have

(3.12) (I)= S=(q-1)(q-l).

When a0 and A=4A+27B0, the equation
(3.13) y=ax+flx+=a(x+Ax+B)

represents an elliptic curve E defined over K=Fq. *) Consider E in
the projective plane and denote by , the number of points of E
rational over K. Since (3.13) has only one point at infinity, we see
from (3.1), (3.2) that

(3.14) , q+ 1+S.

*) As for basic facts o.n elliptic curves, see J. W. S. Cassels, Diophantine
equations with special reference t.o elliptic curves, J. London Math. Soc., 41, 193-
291 (1966).
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According to custom, we denote by a the trace o the Frobenius
endomorphism of E. We have

(3.15) ,=q+l-a,
which implies that

(3.16)
The inequality

(3.17)
is famous, but we do not use it here. By (3.16), one can modify (3.12)
as

(3.18) (I) (q --1)(I) * with (I)*--, a--(q--1)(q--l),
(A,B)

where we identified 2 =(1, A, B) with (A, B). Now, put
(3.19) M={2=(A,B) eK2; A=4A+27B2#=O}.

’The group K acts on M by
(3.20) c(2) 2’= (cA, cB) when 2 (A, B).

As one verifies easily, the elliptic curves E and E, are isomorphic
over K and so we have S=Sr,.

(A, B)" H {c e K c(2) 2}.
/{c e g c4= 1},

(3.21) g= ]{c e g c6=1},

Denote by H the isotropy group at
It is easy to see that

if A0, B=0,
if A=0, B@0,
if A:/:0, B:/:0.

Let us split the sum (I)* in (3.18) into 3 parts according to the struc-
ture o H in (3.21)"

(3.22) (I)* (I)1 + (I)+ (I)3
where (I) is the sum over 2=(A,B) with A=/=0, B=0, (I) is the sum
over 2=(A, B) with A-0, B=/=0 and (I) is the sum over 2=(A, B) with
A =/=0, B =/=0.

(I) and (I). can be computed explicitly by using (3.4)"

(I)= , Z(x+Ax) y.(x+Ax)y.(y3+Ay)
A::O A’K xyK

Z(xy) z(A + (x +y)A/xy)
xy A

}-: Z(x);(Y) + q .(xy)
xy

( Z(x)) + q ;(xy) q(q-- 1)(1 + 9/(-- 1)).

Hence we hav.e
2q(q- 1), if q--1 (rood4),(3.23) (I)=
0, if q--3 (rood4). *)

Similarly, we have

(3.24) (I).= 2q(q- 1), if q--1 (rood 3),
[0, if q--- 2 (rood 3).

From (3.22)-(3.24), it ollows that

*) This, of course, implies that all a=O, ,=(A, 0), when q-=3 (mod 4). The
similar remark may be applied to (3.24).
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(q-- 1)(q--4q 1), if q-- 1 (mod 12),
(3.25) (I)-- (q- 1)(q-2q-- 1), if q---- 5 or 7 (mod 12),

(q- 1)(q- 1), if q-- 11 (mod 12).
Now, the group K acts on the set
(3.26) M*=[=(A, B) e (K) /=4A+27B0}

and we have a=a, when 2 and 2’ belong to the same orbit. Denote
by M the quotient space of M* by the action oi K. Since each orbit
consists of (q--1)/2 elements by (3.21), it follows from (3.25) that

/2(q--4q-- 1), if q--1 (mod 12),
(3.27) , a= 2(q-2q- 1), if q-- 5 or 7 (mod 12),

(2(q- 1), if q-- 11 (mod 12).
Denoting by [El the cardinality o a set E, we have

(3.28) [M]((q-1)/2)=[M*]=(q--1)--(q-1)
since the set (K)-M*=((A,B)e(K); z/=4A+27B=0} can be de-
scribed in terms of C e K as in (3.11). Hence, we get

(3.29) [M]-- 2(q-- 2).
From (3.27), (3.29), we have the ollowing

(3.30) Proposition. Suppose that the characteristic of K=Fq is
not 2,3. Let k-0, 2 or 4 according as q_=11 (mod12), q_5 or 7
(mod 12) or q----1 (rood 12). For a pair 2=(A,B)e (K) with z/=4A

+27B:/:0, denote by a the trace of the Frobenius endomorphism of
the elliptic curve E: y=x+Ax+B. Then, we have

/q-- kq-- 1inf lal< <sup Jail.q--2


