
332 Proc. Japan Acad., 56, Ser. A (1980) [Vol. 56 (A),

On the Hessian of the Square of the Distance
on a Manifold with a Pole

By Katumi YAGI
Department of Mathematics, Osaka University

(Communicated by Kunihiko KODAIRA, M.J.A., Sept. 12, 1980)

Analysis on a manifold with a pole has been studied in a series of
papers by Greene-Wu. In particular, the characterization of C in
terms of geometric conditions is one of the most interesting problems.
In the case of a simply-connected complete K/ihler manifold of non-
positive curvature this problem has been solved by Siu-Yau 2 and
Greene-Wu 1 (Theorem J). Concerning these results Wu has pro-
posed some open problems in 4 and 5 ]. In this note we shall prove
theorems related to his propositions. The author would like to thank
Prof. Wu whose suggestion made this note materialize.

1. A smooth mapping :N--M between Riemannian manifolds
is called a quasi-isometry iff is a diffeomorphism and there exist
positive constants Z and , such that for each tangent vector X on N,

z Ixl-<_l,(x)l=< Ixl.
We recall that (M, o) is called a manifold wih a pole iff M is a Rieman-
nian maniold and the exponential mapping t o e M is a global
diffeomorphism. Let (M, o) be a manifold with pole. The distance
unction rom the pole o will be denoted by r so that r is a smooth
unction on M. The first theorem in question is the ollowing

Theorem 1. Let (M, o) be a manifold with a pole. Suppose there
exists a continuous non-negative function e(t) on [0, 00) such that:

(1) 1(1/2)Dr-g]=e(r)g,

(2) eo=.l" ((t)/t)dt(c.
Then exp: To(M)-M is a quasi-isometry satisfying

exp (eo) - IV]lexp. (V)[=exp (eo) V]
for any tangent vector V at any point in To(M).

In (1)above, Dr denotes the Hessian of the smooth function r
on M. Moreover inequality (1) means the following" If x e M and
X e Tx(M) is a unit vector, then

X)1 e(r(x)).

Remark. It follows from the above theorem that if (M, o) is a
manifold with a pole and (1/2)Dr=g on M then M is isometric to a
Euclidian space. This is a weak form of a theorem by H. W. Wissner
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3 ]" I M is a connected complete Riemannian manifold and f is a
smooth unction on M whose Hessian is equal to the metric on M, rhea
M is isometric to Euclidian space.

Remark. Theorem C in 1 shows the ollowing" Let (M, o) be
a manifold with a pole. If there exist continuous unctions K, k" [0, c)
-[0, c) such that"

(1) --k(r)radial curvature<_K(r),

(2) : tK(t)dt =l,

(3)

then exp’To(M)-M is a quasi-isometry. On the other hand
Theorm in 5 says that under the same assumption as in Theorem C
in 1 there exists a positive smooth function e(t) on [0, ) such that
e(t)-0 as t--c and the conditions (1) and (2) in Theorem 1 above are
satisfied. Therefore Theorem C in 1 follows from Theorem in 5 ]
and Theorem 1.

2. Let (M, o) be a manifold with a pole and r the distance func-
tion from o and 3 the radial vector field, so that is the gradient of r.

We define a vector field H by H=r3. Then a straight calculation
shows that

H--1 grad (r),
2

and particularly H is a smooth vector field on M. We denote by (t)
the one parameter transformation group o M generated by the vector
field H. We have the ollowing

Lemma 1. If the Lie derivative by the vector field H is denoted
by _+, then we have

D:r
Proof. LetX and Y be vector fields on M. Since H=1/2 grad (r:),

Dr(X,Y) X(Y(r)) 17zY(r) X(grad (r:), Y) (grad (r),/TxY) 2(7H,
Y). On the other hand the torsion o the Riemannian connection/7 is
ree, thus :g(X, Y)---H(X, Y)--([H, X], Y)--(X, [H, y])--(/7zH, y)

+(X, 17H). Since Dr is symmetric, (frzH, Y)=(1/2)Dr(X, Y)
=(1/2)Dr(Y, X)=(ITrH, X). Hence Dr:(X, Y)=.+g.

Lemma 2. For any vector v in To(M), we have
(exp v)= exp (ev).

Proof. Let v be a unit vector in To(M) and -(s)=exp (sv). Then

(d/dt)(((s)))=H((>=r(((s))+((). Now we define (0, s) by the
ollowing" (y(s))=-(+(t, s)), so that r(g(y(s))=+(t, s) and +(t, s)=s.
Then (d/dt)((y(s)))=((3/3t)+(t, s))3(+(,>> and hence (3/3t)+(t, s)
=0(t,s). Since we have +(0, s)=s, +(t,s)=se. Therefore Ct(y(s))
=’(seg, i.e., Ct(exp sv)=exp (esv).



334 K. YA [Vol. 56 (A),

Let .={exp tv" t0} be a ray from o (v To(M), ]vl=l) and V a
vector in T,,(To(M)) orthogonal to v. Regarding sV a vector in
T,(To(M)) in the usual way, we define a vector field along by

Z,,,(,) --(exp,),(sV).
Clearly Z is a Jacobi field along the ray r and Z is orthogonal to . at
every point. Furthermore any Jacobi field along . which vanishes at
o and is orthogonal to - can be obtained in this way. The Jacobi field
Z is called the Jacobi field along defined by V.

Lemma 3. Let Z be the Jacobi field along . defined by V and
f(r(x))-=lZ, (x e ). Then we have

(1) Z is (t)-invariant and [H, Z]--0,
(2) lim0 f(r)-O and lim0 f(r)/r--]VI,
(3) (1/2).2_g(Z, Z)--rf(r)f’(r).
Proof. For any u e To(M), Ct(exp u)--exp (etu). Hence (t),(Zo)

--(t),((exp,),(sV))---(exp,)e,v(esV)-Zo,(s,)=Zo,((s,)) and then Z is

(,)-invariant. This shows (1). The first limit of (2) is obvious.
f(r)/r--](exp,).,(rV)]/r-]Vl(]exp,),(rV)]/r[VI)[V] as r--0, this
shows the second limit of (2). Since we have [H,Z]=0, (3) can be
obtained as follows;

1 r(f(r)),__rf(r)f,(r).
2. Proo o Theorem 1. Le (M, o) be a mniold with a pole

which satisfies conditions in Theorem 1. Namely, we hve non-
negative continuous unction (t) on [0, oo) satisfying the conditions
(1) and (2). Let Z be a Jacobi field along a ray - defined by V and
f(r(x))=iZ (x e ). Then the condition (1) in Theorem 1 implies

Irf(r)f’(r)-- f(r)]=e(r)f(r) since (1/2)f._,g(Z, Z)--rf(r)f’(r). There-
fore we have

s(r) rf’(r)--f(r)
_

s(r)
r f(r)r r

Since the mid-term equals (f(r)/r)’/(f(r)/r), we have

Since

lim and So=2 s(t)/t dt,

log
and hence

that is,
IV exp (-o)=f(r)/r_[Vl exp (o),

IrVl exp (-o)=l(exp,).,(rV)l=[rV] exp (o).
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Therefore or any w in To(M) and W in T(To(M)) orthogonal to w,
WI exp (-o)=l(exp.)w(W)l gl W[ exp (Co).

On the other hand, the restriction o2 exp to the ray . is an isometry.
Hence or any v e M and any V e T(To(M)), the same inequality holds.
This completes the proof.

Remark. I (M, o) is a manifold with a pole, then there exists a
non-negative continuous unction e(t) on [0, c) such that"

(1) 1(1/2)Dr-g]<=(r)g around o.
(2) (t)/t is bounded around t=0.

Therefore we can prove the ollowing" I there exists a non-negative
continuous unction .(t) satisfying (1) in Theorem 1 and

s(t)/td<c for some c>0,

then exp" To(M)-+M is a quasi-isometry.
4. A manifold (M, o) with a pole is called a model iff the linear

isotropy group o isometries at o is the ull orthogonal group. I
(M, o) is a model then the metric g o (M, o) relative to geodesic polar
coordinates centered at o assumes the orm

g dr /f(r)dO,
where f ,is a smooth unction on [0, ) satisfying

(1) f>0 on [0, c)
(2) f(0)=0, if(0)=l.

In this case the rdial curvature becomes a unction of distance
unction r and is called the radial curvature unction. Then the Jacobi
equation is

f"(t) -(t)f(t).
We have the following propositions on model with respect to he con-
ditions of Theorem 1.

Proposition 1. Let (M, o) be a model with a non-positive radial
ervatre fnetion --k, i.e., kO. We define the fnetion " [0, o)
--g by (t)=(1/2)Dr(X,X)--I, where X T(M) with r(x)--t, IXI=I
and X is orthogonal to . Then e(t)O and the following conditions
are equivalent"

(A) exp" To(M)--M is a quasi-isometry.
(B) There is some constant >=1 such that r<=f(r)r.
(C) There is some constant1 such that lf’(r)v.
(D) ; sk(s)ds< c.

(E) I: (s)/s ds<c.
The equivalence o the first our conditions was proved by Greene-

Wu 1 (Lemma 4.5), the implication o (D) to (E) was obtained by
Wu 5 and Theorem 1 o this note says that (E) implies (A). Hence
all conditions are equivalent.
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Similarly we can show the following proposition for the case of
non-negative curvature.

Proposition 2. Let (M, o) be a model with a non-negative curva-
ture function K, i.e., K=O. We define the function " [0, c)--R by
s(t)--1--(1/2)Dr(X,X), where X e T(M) with r(x)=t, IXI=I and X
is orthogonal to 3x. Then (t)>=O and the following conditions are
equivalent"

(A) exp" To(M)-+M is a quasi-isometry.
(B) There is a constant , 0]gl, such that r<=f(r)<=r.
(C) There is a constant , 0]gl, such that gf’(r)gl.

(D) ; sk(s)ds=l.

(E) : (s) /s ds<c
5. We shall show the second theorem oi this note which resembles

the converse when the radial curvature is non-positive. Let v be a
unit vector in To(M) and V a vector in T(To(M)) orthogonal to v and
Z the Jacobi field along -=(exp tv(t>=O)} defined by V. We define

,(t) and e,(t) as ollows"
,z(t)=the radial curvature o the plane spanned

by 3 and Z at exp tv,
1 (__e,(t)=..iZl Dr(Z, Z)-[Z[ at exp tv.

Using this notation we shall prove the ollowing
Theorem 2. Let (M, o) be a manifold with a pole whose radial

curvature is non-positive. Suppose exp" To(M)M is a quasi-isometry.
Then for any Jacobi field Z along a ray defined by V,

(1) Oe,z(t),
(2) .[ e,(t) / t dt c

Proof. Since the radial curvature is non-positive, we have that
[Vl=]exp. (V)] or any V e T(To(M)) (v e To(M)).

Therefore there exists a positive constant ]>= 1 such that
[VIg[exp. (V)I] IV] or any V e T(To(M)) (v e To(M)).

Let f(r(x))=]Zxl (x e ). Thus i x=(expv), then r(x)=r((exp v))
=r(exp ev)=e. Hence f(r(x)) ]Zx]=l(exp.)e(ev)l and so

=f(r(x))<=V [eV], that is,
(4) rlV[f(r)r[V1.

On the other hand, since Z is a Jacobi field, Z satisfies the Jacobi
equation along -, that is,

gZ+R(Z, )3=0 along .
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Thus O=(VZ,Z)+r,z(r)IZ]2. Moreover we have (VZ,Z)=3(VaZ, Z)
-IVaZI2=(1/2)(f(r))’-IVZI. Since the parallel displacement by V is
an isometry, ]VoZ]>=I3IZII=If’(r) 1. Therefore we have (1/2)(f(r))"
--(f’(r))>=--r,z(r)f(r), and hence

(5) f"(r) --r,z(r)f(r).
Since ,z(r)=O, f(r) is an increasing convex function. Moreover we
claim

(6) IY]f’(r)i]Y 1.
In act, ff(0)=lV] by Lemma 3 (2). Thus IVlf’(r). Suppose there
exists ro>=O such that f’(ro)ilVl. Take a small positive e0 such
that f’(ro)i]Vl/z. Since if(r) is an increasing unction, f’(r)ilV
+e(r>=ro). Thus f(r)-f(ro)(lVl+D(r-ro). Ii r is sufficiently
large, inequality (4) is contradicted. Therefore we hve the inequality
(6). Now we can show the inequality (1) as ollows:

s,z(r)= l-(1Dr2(Z Z)-IZI) =---!--H(IZI)- 1
IZ[ \ 2

1-(rf’(r) f(r))>r(f(r)/r)’/(f(r)/r).
f(r)

Since f(r)is an increasing convex unction and f(0)=0, f(r)/r is an
increasing function and hence s(r)>=0. Thus we have

.[o e,z(t)/t dr=log f(r)/rl;log ] IV]--log IYl=log ]< oo.

This shows (2). By integrating the inequality (5) we have ff(r) f’(O)

=Ii --’(t)(f(t)/IV])dt=(1/IVI)(f’(r)-lV])<=-l<c" The proof is

completed.
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