78. On the Hessian of the Square of the Distance on a Manifold with a Pole

By Katsumi YAGI

Department of Mathematics, Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1980)

Analysis on a manifold with a pole has been studied in a series of papers by Greene-Wu. In particular, the characterization of C^n in terms of geometric conditions is one of the most interesting problems. In the case of a simply-connected complete Kähler manifold of nonpositive curvature this problem has been solved by Siu-Yau [2] and Greene-Wu [1] (Theorem J). Concerning these results Wu has proposed some open problems in [4] and [5]. In this note we shall prove theorems related to his propositions. The author would like to thank Prof. Wu whose suggestion made this note materialize.

1. A smooth mapping $\phi: N \rightarrow M$ between Riemannian manifolds is called a *quasi-isometry* iff ϕ is a diffeomorphism and there exist positive constants μ and ν such that for each tangent vector X on N,

$$\mu |X|_{\scriptscriptstyle N} \leq |\phi_*(X)|_{\scriptscriptstyle M} \leq \nu |X|_{\scriptscriptstyle N}$$

We recall that (M, o) is called a *manifold with a pole* iff M is a Riemannian manifold and the exponential mapping at $o \in M$ is a global diffeomorphism. Let (M, o) be a manifold with a pole. The distance function from the pole o will be denoted by r so that r^2 is a smooth function on M. The first theorem in question is the following

Theorem 1. Let (M, o) be a manifold with a pole. Suppose there exists a continuous non-negative function $\varepsilon(t)$ on $[0, \infty)$ such that:

(1) $|(1/2)D^2r^2-g| \leq \varepsilon(r)g$,

(2)
$$\varepsilon_o = \int_0^\infty (\varepsilon(t)/t) dt < \infty.$$

Then $\exp: T_o(M) \rightarrow M$ is a quasi-isometry satisfying $\exp(\varepsilon_o)^{-1} |V| \leq |\exp_*(V)| \leq \exp(\varepsilon_o) |V|$

for any tangent vector V at any point in $T_o(M)$.

In (1) above, D^2r^2 denotes the Hessian of the smooth function r^2 on M. Moreover inequality (1) means the following: If $x \in M$ and $X \in T_x(M)$ is a unit vector, then

$$\left|\frac{1}{2}D^2r^2(X,X)-1\right|\leq\varepsilon(r(x)).$$

Remark. It follows from the above theorem that if (M, o) is a manifold with a pole and $(1/2)D^2r^2 = g$ on M then M is isometric to a Euclidian space. This is a weak form of a theorem by H. W. Wissner

Remark. Theorem C in [1] shows the following: Let (M, o) be a manifold with a pole. If there exist continuous functions $K, k : [0, \infty) \rightarrow [0, \infty)$ such that:

- (1) $-k(r) \leq \text{radial curvature} \leq K(r)$,
- (2) $\int_{0}^{\infty} tK(t)dt \leq 1,$ (3) $\int_{0}^{\infty} tk(t)dt < \infty,$

then $\exp: T_o(M) \to M$ is a quasi-isometry. On the other hand Theorm in [5] says that under the same assumption as in Theorem C in [1] there exists a positive smooth function $\varepsilon(t)$ on $[0, \infty)$ such that $\varepsilon(t) \to 0$ as $t \to \infty$ and the conditions (1) and (2) in Theorem 1 above are satisfied. Therefore Theorem C in [1] follows from Theorem in [5] and Theorem 1.

2. Let (M, o) be a manifold with a pole and r the distance function from o and ∂ the radial vector field, so that ∂ is the gradient of r. We define a vector field H by $H=r\partial$. Then a straight calculation shows that

$$H = \frac{1}{2} \operatorname{grad}(r^2),$$

and particularly H is a smooth vector field on M. We denote by (ϕ_i) the one parameter transformation group of M generated by the vector field H. We have the following

Lemma 1. If the Lie derivative by the vector field H is denoted by \mathcal{L}_{H} , then we have

$$D^2r^2 = \mathcal{L}_H g.$$

Proof. Let X and Y be vector fields on M. Since $H=1/2 \operatorname{grad}(r^2)$, $D^2r^2(X,Y)=X(Y(r^2))-\mathcal{V}_XY(r^2)=X(\operatorname{grad}(r^2),Y)-(\operatorname{grad}(r^2),\mathcal{V}_XY)=2(\mathcal{V}_XH,Y)$. On the other hand the torsion of the Riemannian connection \mathcal{V} is free, thus $\mathcal{L}_Hg(X,Y)=H(X,Y)-([H,X],Y)-(X,[H,Y])=(\mathcal{V}_XH,Y)$ $+(X,\mathcal{V}_YH)$. Since D^2r^2 is symmetric, $(\mathcal{V}_XH,Y)=(1/2)D^2r^2(X,Y)$ $=(1/2)D^2r^2(Y,X)=(\mathcal{V}_YH,X)$. Hence $D^2r^2(X,Y)=\mathcal{L}_Hg$.

Lemma 2. For any vector v in $T_o(M)$, we have

 $\phi_t(\exp v) = \exp(e^t v).$

Proof. Let v be a unit vector in $T_o(M)$ and $\gamma(s) = \exp(sv)$. Then $(d/dt)(\phi_t(\gamma(s)))_t = H_{\phi_t(\gamma(s))} = r(\phi_t(\gamma(s))\partial_{\phi_t(\gamma(s))})$. Now we define $\Phi(0, s)$ by the following: $\phi_t(\gamma(s)) = \gamma(\Phi(t, s))$, so that $r(\phi_t(\gamma(s)) = \Phi(t, s)$ and $\Phi(t, s) = s$. Then $(d/dt)(\phi_t(\gamma(s)))_t = ((\partial/\partial t)\Phi(t, s))_t\partial_{\gamma(\Phi(t, s))}$ and hence $(\partial/\partial t)\Phi(t, s)$ $= \Phi(t, s)$. Since we have $\Phi(0, s) = s$, $\Phi(t, s) = se^t$. Therefore $\phi_t(\gamma(s))$ $= \gamma(se^t)$, i.e., $\phi_t(\exp sv) = \exp(e^t sv)$.

No. 7]

Let $\gamma = \{ \exp tv : t \ge 0 \}$ be a ray from $o (v \in T_o(M), |v|=1)$ and V a vector in $T_v(T_o(M))$ orthogonal to v. Regarding sV a vector in $T_{sv}(T_o(M))$ in the usual way, we define a vector field along γ by

$$Z_{\exp(sv)} = (\exp_*)_{sv}(sV)$$

Clearly Z is a Jacobi field along the ray γ and Z is orthogonal to γ at every point. Furthermore any Jacobi field along γ which vanishes at o and is orthogonal to γ can be obtained in this way. The Jacobi field Z is called the Jacobi field along γ defined by V.

Lemma 3. Let Z be the Jacobi field along γ defined by V and $f(r(x)) = |Z_x| (x \in \gamma)$. Then we have

- (1) Z is (ϕ_t) -invariant and [H, Z] = 0,
- (2) $\lim_{r\to 0} f(r) = 0$ and $\lim_{r\to 0} f(r)/r = |V|$,
- (3) $(1/2) \mathcal{L}_{H} g(Z, Z) = rf(r)f'(r).$

Proof. For any $u \in T_o(M)$, $\phi_t(\exp u) = \exp(e^t u)$. Hence $(\phi_t)_*(Z_{\exp(sv)}) = (\phi_t)_*((\exp_*)_{sv}(sV)) = (\exp_*)_{e^tsv}(e^t sV) = Z_{\exp(e^t sv)} = Z_{\phi_t(\exp(sv))}$ and then Z is (ϕ_t) -invariant. This shows (1). The first limit of (2) is obvious. $f(r)/r = |(\exp_*)_{rv}(rV)|/r = |V| (|\exp_*)_{rv}(rV)|/r |V|) \rightarrow |V|$ as $r \rightarrow 0$, this shows the second limit of (2). Since we have [H, Z] = 0, (3) can be obtained as follows;

$$\begin{split} &\frac{1}{2} \mathcal{L}_{H} g(Z,Z) = \frac{1}{2} H(|Z|^{2}) - ([H,Z],Z) = \frac{1}{2} r \partial(|Z|^{2}) \\ &= \frac{1}{2} r(f(r)^{2})' = r f(r) f'(r). \end{split}$$

3. Proof of Theorem 1. Let (M, o) be a manifold with a pole which satisfies conditions in Theorem 1. Namely, we have a nonnegative continuous function $\epsilon(t)$ on $[0, \infty)$ satisfying the conditions (1) and (2). Let Z be a Jacobi field along a ray γ defined by V and $f(r(x)) = |Z_x| (x \in \gamma)$. Then the condition (1) in Theorem 1 implies $|rf(r)f'(r) - f(r)^2| \leq \epsilon(r)f(r)^2$ since $(1/2)\mathcal{L}_H g(Z,Z) = rf(r)f'(r)$. Therefore we have

$$-\frac{\varepsilon(r)}{r} \leq \frac{rf'(r) - f(r)}{f(r)r} \leq \frac{\varepsilon(r)}{r}.$$

Since the mid-term equals (f(r)/r)'/(f(r)/r), we have

$$-\int_0^r \varepsilon(t)/t\,dt \leq \log f(t)|_0^r \leq \int_0^r \varepsilon(t)/t\,dt.$$

Since

$$\lim_{r o 0} f(r)/r = |V| \quad ext{and} \quad arepsilon_o = \int_0^\infty arepsilon(t)/t \, dt, \ \log |V| - arepsilon_o \leq \log f(r)/r \leq \log |V| + arepsilon_o,$$

and hence

$$|V| \exp(-\varepsilon_o) \leq f(r)/r \leq |V| \exp(\varepsilon_o),$$

that is,

$$|rV|\exp(-\epsilon_o) \leq |(\exp_*)_{rv}(rV)| \leq |rV|\exp(\epsilon_o).$$

Therefore for any w in $T_o(M)$ and W in $T_w(T_o(M))$ orthogonal to w, $|W| \exp(-\varepsilon_o) \leq |(\exp_*)_w(W)| \leq |W| \exp(\varepsilon_o).$

On the other hand, the restriction of exp to the ray γ is an isometry. Hence for any $v \in M$ and any $V \in T_v(T_o(M))$, the same inequality holds. This completes the proof.

Remark. If (M, o) is a manifold with a pole, then there exists a non-negative continuous function $\varepsilon(t)$ on $[0, \infty)$ such that:

(1) $|(1/2)D^2r^2-g|\leq \varepsilon(r)g \text{ around } o.$

(2) $\varepsilon(t)/t$ is bounded around t=0.

Therefore we can prove the following: If there exists a non-negative continuous function $\varepsilon(t)$ satisfying (1) in Theorem 1 and

$$\int\limits_{c}^{\infty} arepsilon(t)/t \ dt \!<\! \infty \qquad ext{for some } c\!>\! 0,$$

then exp: $T_o(M) \rightarrow M$ is a quasi-isometry.

4. A manifold (M, o) with a pole is called a *model* iff the linear isotropy group of isometries at o is the full orthogonal group. If (M, o) is a model then the metric g of (M, o) relative to geodesic polar coordinates centered at o assumes the form

$$g = dr^2 + f(r)^2 d\theta^2,$$

where f is a smooth function on $[0, \infty)$ satisfying

- (1) f > 0 on $[0, \infty)$
- (2) f(0)=0, f'(0)=1.

In this case the radial curvature κ becomes a function of distance function r and is called the radial curvature function. Then the Jacobi equation is

$$f^{\prime\prime}(t) = -\kappa(t)f(t).$$

We have the following propositions on a model with respect to the conditions of Theorem 1.

Proposition 1. Let (M, o) be a model with a non-positive radial curvature function -k, i.e., $k \ge 0$. We define the function $\varepsilon : [0, \infty) \rightarrow \mathbf{R}$ by $\varepsilon(t) = (1/2)D^2r^2(X, X) - 1$, where $X \in T_x(M)$ with r(x) = t, |X| = 1 and X is orthogonal to ∂_x . Then $\varepsilon(t) \ge 0$ and the following conditions are equivalent:

- (A) $\exp: T_o(M) \rightarrow M$ is a quasi-isometry.
- (B) There is some constant $\eta \ge 1$ such that $r \le f(r) \le \eta r$.
- (C) There is some constant $\eta \ge 1$ such that $1 \le f'(r) \le \eta$.
- (D) $\int_0^\infty sk(s)ds < \infty$.
- (E) $\int_0^\infty \varepsilon(s)/s \, ds < \infty$.

The equivalence of the first four conditions was proved by Greene-Wu [1] (Lemma 4.5), the implication of (D) to (E) was obtained by Wu [5] and Theorem 1 of this note says that (E) implies (A). Hence all conditions are equivalent.

No. 7]

Similarly we can show the following proposition for the case of non-negative curvature.

Proposition 2. Let (M, o) be a model with a non-negative curvature function K, i.e., $K \ge 0$. We define the function $\varepsilon : [0, \infty) \rightarrow \mathbb{R}$ by $\varepsilon(t) = 1 - (1/2)D^2r^2(X, X)$, where $X \in T_x(M)$ with r(x) = t, |X| = 1 and X is orthogonal to ∂_x . Then $\varepsilon(t) \ge 0$ and the following conditions are equivalent:

- (A) $\exp: T_o(M) \rightarrow M$ is a quasi-isometry.
- (B) There is a constant η , $0 < \eta \leq 1$, such that $\eta r \leq f(r) \leq r$.
- (C) There is a constant η , $0 < \eta \leq 1$, such that $\eta \leq f'(r) \leq 1$.

(D)
$$\int_{0}^{\infty} sk(s)ds \leq 1.$$

(E) $\int_{0}^{\infty} \epsilon(s)/s \, ds < \infty.$

5. We shall show the second theorem of this note which resembles the converse when the radial curvature is non-positive. Let v be a unit vector in $T_o(M)$ and V a vector in $T_v(T_o(M))$ orthogonal to v and Z the Jacobi field along $\gamma = \{\exp tv(t \ge 0)\}$ defined by V. We define $\kappa_{r,Z}(t)$ and $\varepsilon_{r,Z}(t)$ as follows:

> $\kappa_{r,Z}(t)$ = the radial curvature of the plane spanned by ∂ and Z at exp tv.

$$arepsilon_{ au,Z}(t) = rac{1}{|Z|^2} igg(rac{1}{2} D^2 r^2 (Z,Z) - |Z|^2igg) \qquad ext{at exp } tv.$$

Using this notation we shall prove the following

Theorem 2. Let (M, o) be a manifold with a pole whose radial curvature is non-positive. Suppose $\exp: T_o(M) \rightarrow M$ is a quasi-isometry. Then for any Jacobi field Z along a ray γ defined by V,

(1) $0 \leq \varepsilon_{r,z}(t),$ (2) $\int_{0}^{\infty} \varepsilon_{r,z}(t)/t \, dt < \infty,$ (3) $0 \leq \int_{0}^{\infty} -\kappa_{r,z}(t)t \, dt < \infty.$

Proof. Since the radial curvature is non-positive, we have that $|V| \leq |\exp_*(V)|$ for any $V \in T_v(T_o(M))$ $(v \in T_o(M))$.

Therefore there exists a positive constant $\eta \geq 1$ such that

 $|V| \leq |\exp_*(V)| \leq \eta |V| \qquad ext{for any } V \in T_v(T_o(M)) \ (v \in T_o(M)).$

Let $f(r(x)) = |Z_x|$ $(x \in \gamma)$. Thus if $x = \phi_t(\exp v)$, then $r(x) = r(\phi_t(\exp v))$ = $r(\exp e^t v) = e^t$. Hence $f(r(x)) = |Z_x| = |(\exp_*)_{e^t v}(e^t v)|$ and so $|e^t V| \leq f(r(x)) \leq \eta |e^t V|$, that is,

(4) $r|V| \leq f(r) \leq \eta r|V|$.

On the other hand, since Z is a Jacobi field, Z satisfies the Jacobi equation along γ , that is,

$$\nabla^2_{\partial} Z + R(Z, \partial)\partial = 0$$
 along γ .

Thus $0 = (\mathcal{F}_{\vartheta}^2 Z, Z) + \kappa_{r,Z}(r) |Z|^2$. Moreover we have $(\mathcal{F}_{\vartheta}^2 Z, Z) = \partial(\mathcal{F}_{\vartheta} Z, Z) - |\mathcal{F}_{\vartheta} Z|^2 = (1/2)(f(r)^2)'' - |\mathcal{F}_{\vartheta} Z|^2$. Since the parallel displacement by \mathcal{F} is an isometry, $|\mathcal{F}_{\vartheta} Z| \ge |\partial |Z|| = |f'(r)|$. Therefore we have $(1/2)(f(r)^2)'' - (f'(r))^2 \ge -\kappa_{r,Z}(r)f(r)^2$, and hence

(5) $f''(r) \ge -\kappa_{r,z}(r)f(r)$.

Since $\kappa_{r,z}(r) \leq 0$, f(r) is an increasing convex function. Moreover we claim

(6) $|V| \leq f'(r) \leq \eta |V|$.

In fact, f'(0) = |V| by Lemma 3 (2). Thus $|V| \leq f'(r)$. Suppose there exists $r_o \geq 0$ such that $f'(r_o) > \eta |V|$. Take a small positive $\varepsilon > 0$ such that $f'(r_o) > \eta |V| + \varepsilon$. Since f'(r) is an increasing function, $f'(r) > \eta |V| + \varepsilon (r \geq r_o)$. Thus $f(r) - f(r_o) > (\eta |V| + \varepsilon)(r - r_o)$. If r is sufficiently large, inequality (4) is contradicted. Therefore we have the inequality (6). Now we can show the inequality (1) as follows:

$$arepsilon_{r,Z}(r) = rac{1}{|Z|^2} \Big(rac{1}{2} D^2 r^2(Z,Z) - |Z|^2 \Big) = rac{1}{|Z|} H(|Z|) - 1 \ = rac{1}{f(r)} (rf'(r) - f(r)) \ge r(f(r)/r)'/(f(r)/r).$$

Since f(r) is an increasing convex function and f(0)=0, f(r)/r is an increasing function and hence $\varepsilon(r) \ge 0$. Thus we have

$$\int_0^{\infty} \varepsilon_{\tau,z}(t)/t \ dt = \log f(r)/r|_0^{\infty} \leq \log \eta |V| - \log |V| = \log \eta < \infty.$$

This shows (2). By integrating the inequality (5) we have $f'(r) - f'(0) \ge \int_0^r -\kappa_{r,z}(t)f(t)dt$. Since f'(0) = |V| and $f(r) \ge r |V|$, $\int_0^r -\kappa_{r,z}(t)t dt \le \int_0^r -\kappa_{r,z}(t)(f(t)/|V|)dt \le (1/|V|)(f'(r) - |V|) \le \eta - 1 < \infty$. The proof is completed.

References

- [1] Greene, R. E., and Wu, H.: Function theory on manifolds which possess a pole. Lect. Notes in Math., vol. 699, Springer-Verlag, Berlin-Heidelberg-New York (1979).
- [2] Siu, Y. T., and Yau, S. T.: Complete Kähler manifolds with non positive curvature of faster than quadratic decay. Ann. Math., 105, 225-264 (1977): Errata. Ibid., 109, 621-623 (1979).
- [3] Wissner, H. W.: Geodätische Konvexität in Riemannschen Mannigfaltigkeiten. Doctoral Dissertation, Berlin (1979).
- [4] Wu, H.: Some open problems in the study of noncompact Kähler manifolds. Kökyuroku RIMS, Kyoto University, no. 340, 12-25 (1978).
- [5] —: On a problem concerning the intrinsic characterization of Cⁿ. Math. Ann., 246, 15-22 (1979).