# 78. On the Hessian of the Square of the Distance on a Manifold with a Pole 

By Katsumi Yagi<br>Department of Mathematics, Osaka University<br>(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1980)

Analysis on a manifold with a pole has been studied in a series of papers by Greene-Wu. In particular, the characterization of $C^{n}$ in terms of geometric conditions is one of the most interesting problems. In the case of a simply-connected complete Kähler manifold of nonpositive curvature this problem has been solved by Siu-Yau [2] and Greene-Wu [1] (Theorem J). Concerning these results Wu has proposed some open problems in [4] and [5]. In this note we shall prove theorems related to his propositions. The author would like to thank Prof. Wu whose suggestion made this note materialize.

1. A smooth mapping $\phi: N \rightarrow M$ between Riemannian manifolds is called a quasi-isometry iff $\phi$ is a diffeomorphism and there exist positive constants $\mu$ and $\nu$ such that for each tangent vector $X$ on $N$,

$$
\mu|X|_{N} \leqq\left|\phi_{*}(X)\right|_{M} \leqq \nu|X|_{N} .
$$

We recall that ( $M, o$ ) is called a manifold with a pole iff $M$ is a Riemannian manifold and the exponential mapping at $o \in M$ is a global diffeomorphism. Let $(M, o)$ be a manifold with a pole. The distance function from the pole $o$ will be denoted by $r$ so that $r^{2}$ is a smooth function on $M$. The first theorem in question is the following

Theorem 1. Let $(M, o)$ be a manifold with a pole. Suppose there exists a continuous non-negative function $\varepsilon(t)$ on $[0, \infty)$ such that:
(1) $\left|(1 / 2) D^{2} r^{2}-g\right| \leqq \varepsilon(r) g$,
(2) $\varepsilon_{o}=\int_{0}^{\infty}(\varepsilon(t) / t) d t<\infty$.

Then $\exp : T_{o}(M) \rightarrow M$ is a quasi-isometry satisfying

$$
\exp \left(\varepsilon_{o}\right)^{-1}|V| \leqq\left|\exp _{*}(V)\right| \leqq \exp \left(\varepsilon_{o}\right)|V|
$$

for any tangent vector $V$ at any point in $T_{o}(M)$.
In (1) above, $D^{2} r^{2}$ denotes the Hessian of the smooth function $r^{2}$ on $M$. Moreover inequality (1) means the following: If $x \in M$ and $X \in T_{x}(M)$ is a unit vector, then

$$
\left|\frac{1}{2} D^{2} r^{2}(X, X)-1\right| \leqq \varepsilon(r(x))
$$

Remark. It follows from the above theorem that if $(M, o)$ is a manifold with a pole and $(1 / 2) D^{2} r^{2}=g$ on $M$ then $M$ is isometric to a Euclidian space. This is a weak form of a theorem by H. W. Wissner
[3]: If $M$ is a connected complete Riemannian manifold and $f$ is a smooth function on $M$ whose Hessian is equal to the metric on $M$, then $M$ is isometric to a Euclidian space.

Remark. Theorem C in [1] shows the following: Let ( $M, o$ ) be a manifold with a pole. If there exist continuous functions $K, k:[0, \infty)$ $\rightarrow[0, \infty)$ such that:
(1) $-k(r) \leqq$ radial curvature $\leqq K(r)$,
(2) $\int_{0}^{\infty} t K(t) d t \leqq 1$,
(3) $\int_{0}^{\infty} t k(t) d t<\infty$,
then $\exp : T_{o}(M) \rightarrow M$ is a quasi-isometry. On the other hand Theorm in [5] says that under the same assumption as in Theorem C in [1] there exists a positive smooth function $\varepsilon(t)$ on $[0, \infty)$ such that $\varepsilon(t) \rightarrow 0$ as $t \rightarrow \infty$ and the conditions (1) and (2) in Theorem 1 above are satisfied. Therefore Theorem C in [1] follows from Theorem in [5] and Theorem 1.
2. Let $(M, o)$ be a manifold with a pole and $r$ the distance function from $o$ and $\partial$ the radial vector field, so that $\partial$ is the gradient of $r$. We define a vector field $H$ by $H=r \partial$. Then a straight calculation shows that

$$
H=\frac{1}{2} \operatorname{grad}\left(r^{2}\right)
$$

and particularly $H$ is a smooth vector field on $M$. We denote by $\left(\phi_{t}\right)$ the one parameter transformation group of $M$ generated by the vector field $H$. We have the following

Lemma 1. If the Lie derivative by the vector field $H$ is denoted by $\mathcal{L}_{H}$, then we have

$$
D^{2} r^{2}=\mathcal{L}_{H} g .
$$

Proof. Let $X$ and $Y$ be vector fields on $M$. Since $H=1 / 2 \operatorname{grad}\left(r^{2}\right)$, $D^{2} r^{2}(X, Y)=X\left(Y\left(r^{2}\right)\right)-\nabla_{X} Y\left(r^{2}\right)=X\left(\operatorname{grad}\left(r^{2}\right), Y\right)-\left(\operatorname{grad}\left(r^{2}\right), \nabla_{X} Y\right)=2\left(\nabla_{X} H\right.$, $Y$ ). On the other hand the torsion of the Riemannian connection $V$ is free, thus $\mathcal{L}_{H} g(X, Y)=H(X, Y)-([H, X], Y)-(X,[H, Y])=\left(\nabla_{X} H, Y\right)$ $+\left(X, \nabla_{Y} H\right)$. Since $D^{2} r^{2}$ is symmetric, $\quad\left(\nabla_{X} H, Y\right)=(1 / 2) D^{2} r^{2}(X, Y)$ $=(1 / 2) D^{2} r^{2}(Y, X)=\left(\nabla_{Y} H, X\right)$. Hence $D^{2} r^{2}(X, Y)=\mathcal{L}_{H} g$.

Lemma 2. For any vector $v$ in $T_{o}(M)$, we have

$$
\phi_{t}(\exp v)=\exp \left(e^{t} v\right)
$$

Proof. Let $v$ be a unit vector in $T_{o}(M)$ and $\gamma(s)=\exp (s v)$. Then $(d / d t)\left(\phi_{t}(\gamma(s))\right)_{t}=H_{\phi_{t}(\gamma(s))}=r\left(\phi_{t}(\gamma(s)) \partial_{\phi_{t}(\gamma(s))}\right.$. Now we define $\Phi(0, s)$ by the following: $\quad \phi_{t}(\gamma(s))=\gamma(\Phi(t, s))$, so that $r\left(\phi_{t}(\gamma(s))=\Phi(t, s)\right.$ and $\Phi(t, s)=s$. Then $(d / d t)\left(\phi_{t}(\gamma(s))\right)_{t}=((\partial / \partial t) \Phi(t, s))_{t} \partial_{\gamma(\Phi(t, s))}$ and hence $(\partial / \partial t) \Phi(t, s)$ $=\Phi(t, s)$. Since we have $\Phi(0, s)=s, \Phi(t, s)=s e^{t}$. Therefore $\phi_{t}(\gamma(s))$ $=\gamma\left(s e^{t}\right)$, i.e., $\phi_{t}(\exp s v)=\exp \left(e^{t} s v\right)$.

Let $\gamma=\{\exp t v: t \geqq 0\}$ be a ray from $o\left(v \in T_{o}(M),|v|=1\right)$ and $V$ a vector in $T_{v}\left(T_{o}(M)\right.$ ) orthogonal to $v$. Regarding $s V$ a vector in $T_{s v}\left(T_{o}(M)\right)$ in the usual way, we define a vector field along $\gamma$ by

$$
Z_{\exp (s v)}=\left(\exp _{*}\right)_{s v}(s V) .
$$

Clearly $Z$ is a Jacobi field along the ray $\gamma$ and $Z$ is orthogonal to $\gamma$ at every point. Furthermore any Jacobi field along $\gamma$ which vanishes at $o$ and is orthogonal to $\gamma$ can be obtained in this way. The Jacobi field $Z$ is called the Jacobi field along $\gamma$ defined by $V$.

Lemma 3. Let $Z$ be the Jacobi field along $\gamma$ defined by $V$ and $f(r(x))=\left|Z_{x}\right|(x \in \gamma)$. Then we have
(1) $Z$ is $\left(\phi_{t}\right)$-invariant and $[H, Z]=0$,
(2) $\lim _{r \rightarrow 0} f(r)=0$ and $\lim _{r \rightarrow 0} f(r) / r=|V|$,
(3) $\quad(1 / 2) \mathcal{L}_{H} g(Z, Z)=r f(r) f^{\prime}(r)$.

Proof. For any $u \in T_{o}(M), \phi_{t}(\exp u)=\exp \left(e^{t} u\right)$. Hence $\left(\phi_{t}\right)_{*}\left(Z_{\exp (s v)}\right)$ $=\left(\phi_{t}\right)_{*}\left(\left(\exp _{*}\right)_{s v}(s V)\right)=\left(\exp _{*}\right)_{e^{t_{s v}}}\left(e^{t} s V\right)=Z_{\exp \left(e t_{s v)}\right.}=Z_{\phi_{\ell(\exp (s v))}}$ and then $Z$ is $\left(\phi_{t}\right)$-invariant. This shows (1). The first limit of (2) is obvious. $\left.f(r) / r=\left|\left(\exp _{*}\right)_{r v}(r V)\right| / r=|V|\left(\mid \exp _{*}\right)_{r v}(r V)|/ r| V \mid\right) \rightarrow|V| \quad$ as $\quad r \rightarrow 0$, this shows the second limit of (2). Since we have $[H, Z]=0$, (3) can be obtained as follows;

$$
\begin{aligned}
\frac{1}{2} \mathcal{L}_{H} g(Z, Z) & =\frac{1}{2} H\left(|Z|^{2}\right)-([H, Z], Z)=\frac{1}{2} r \partial\left(|Z|^{2}\right) \\
& =\frac{1}{2} r\left(f(r)^{2}\right)^{\prime}=r f(r) f^{\prime}(r) .
\end{aligned}
$$

3. Proof of Theorem 1. Let $(M, o)$ be a manifold with a pole which satisfies conditions in Theorem 1. Namely, we have a nonnegative continuous function $\varepsilon(t)$ on $[0, \infty)$ satisfying the conditions (1) and (2). Let $Z$ be a Jacobi field along a ray $\gamma$ defined by $V$ and $f(r(x))=\left|Z_{x}\right|(x \in \gamma)$. Then the condition (1) in Theorem 1 implies $\left|r f(r) f^{\prime}(r)-f(r)^{2}\right| \leqq \varepsilon(r) f(r)^{2}$ since $(1 / 2) \mathcal{L}_{H} g(Z, Z)=r f(r) f^{\prime}(r)$. Therefore we have

$$
-\frac{\varepsilon(r)}{r} \leqq \frac{r f^{\prime}(r)-f(r)}{f(r) r} \leqq \frac{\varepsilon(r)}{r} .
$$

Since the mid-term equals $(f(r) / r)^{\prime} /(f(r) / r)$, we have

$$
-\int_{0}^{r} \varepsilon(t) / t d t \leqq\left.\log f(t)\right|_{0} ^{r} \leqq \int_{0}^{r} \varepsilon(t) / t d t
$$

Since

$$
\begin{aligned}
& \lim _{r \rightarrow 0} f(r) / r=|V| \text { and } \varepsilon_{o}=\int_{0}^{\infty} \varepsilon(t) / t d t \\
& \log |V|-\varepsilon_{o} \leqq \log f(r) / r \leqq \log |V|+\varepsilon_{o}
\end{aligned}
$$

and hence

$$
|V| \exp \left(-\varepsilon_{o}\right) \leqq f(r) / r \leqq|V| \exp \left(\varepsilon_{o}\right),
$$

that is,

$$
|r V| \exp \left(-\varepsilon_{o}\right) \leqq\left|\left(\exp _{*}\right)_{r v}(r V)\right| \leqq|r V| \exp \left(\varepsilon_{o}\right)
$$

Therefore for any $w$ in $T_{o}(M)$ and $W$ in $T_{w}\left(T_{o}(M)\right)$ orthogonal to $w$, $|W| \exp \left(-\varepsilon_{0}\right) \leqq\left|\left(\exp _{*}\right)_{w}(W)\right| \leqq|W| \exp \left(\varepsilon_{o}\right)$.
On the other hand, the restriction of $\exp$ to the ray $\gamma$ is an isometry. Hence for any $v \in M$ and any $V \in T_{v}\left(T_{o}(M)\right.$ ), the same inequality holds. This completes the proof.

Remark. If ( $M, o$ ) is a manifold with a pole, then there exists a non-negative continuous function $\varepsilon(t)$ on $[0, \infty)$ such that:
(1) $\left|(1 / 2) D^{2} r^{2}-g\right| \leqq \varepsilon(r) g$ around 0 .
(2) $\varepsilon(t) / t$ is bounded around $t=0$.

Therefore we can prove the following: If there exists a non-negative continuous function $\varepsilon(t)$ satisfying (1) in Theorem 1 and

$$
\int_{c}^{\infty} \varepsilon(t) / t d t<\infty \quad \text { for some } c>0
$$

then $\exp : T_{o}(M) \rightarrow M$ is a quasi-isometry.
4. A manifold ( $M, o$ ) with a pole is called a model iff the linear isotropy group of isometries at $o$ is the full orthogonal group. If ( $M, o$ ) is a model then the metric $g$ of $(M, o)$ relative to geodesic polar coordinates centered at $o$ assumes the form

$$
g=d r^{2}+f(r)^{2} d \theta^{2},
$$

where $f$ is a smooth function on $[0, \infty)$ satisfying
(1) $f>0$ on $[0, \infty)$
(2) $f(0)=0, f^{\prime}(0)=1$.

In this case the radial curvature $\kappa$ becomes a function of distance function $r$ and is called the radial curvature function. Then the Jacobi equation is

$$
f^{\prime \prime}(t)=-\kappa(t) f(t)
$$

We have the following propositions on a model with respect to the conditions of Theorem 1.

Proposition 1. Let $(M, o)$ be a model with a non-positive radial curvature function $-k$, i.e., $k \geqq 0$. We define the function $\varepsilon:[0, \infty)$ $\rightarrow \boldsymbol{R}$ by $\varepsilon(t)=(1 / 2) D^{2} r^{2}(X, X)-1$, where $X \in T_{x}(M)$ with $r(x)=t,|X|=1$ and $X$ is orthogonal to $\partial_{x}$. Then $\varepsilon(t) \geqq 0$ and the following conditions are equivalent:
(A) $\exp : T_{o}(M) \rightarrow M$ is a quasi-isometry.
(B) There is some constant $\eta \geqq 1$ such that $r \leqq f(r) \leqq \eta r$.
(C) There is some constant $\eta \geqq 1$ such that $1 \leqq f^{\prime}(r) \leqq \eta$.
(D) $\int_{0}^{\infty} s k(s) d s<\infty$.
(E) $\int_{0}^{\infty} \varepsilon(s) / s d s<\infty$.

The equivalence of the first four conditions was proved by GreeneWu [ 1 ] (Lemma 4.5), the implication of (D) to (E) was obtained by Wu [5] and Theorem 1 of this note says that (E) implies (A). Hence all conditions are equivalent.

Similarly we can show the following proposition for the case of non-negative curvature.

Proposition 2. Let $(M, o)$ be a model with a non-negative curvature function $K$, i.e., $K \geqq 0$. We define the function $\varepsilon:[0, \infty) \rightarrow \boldsymbol{R}$ by $\varepsilon(t)=1-(1 / 2) D^{2} r^{2}(X, X)$, where $X \in T_{x}(M)$ with $r(x)=t,|X|=1$ and $X$ is orthogonal to $\partial_{x}$. Then $\varepsilon(t) \geqq 0$ and the following conditions are equivalent:
(A) $\exp : T_{o}(M) \rightarrow M$ is a quasi-isometry.
(B) There is a constant $\eta, 0<\eta \leqq 1$, such that $\eta r \leqq f(r) \leqq r$.
(C) There is a constant $\eta, 0<\eta \leqq 1$, such that $\eta \leqq f^{\prime}(r) \leqq 1$.
(D) $\int_{0}^{\infty} s k(s) d s \leqq 1$.
(E) $\int_{0}^{\infty} \varepsilon(s) / s d s<\infty$.
5. We shall show the second theorem of this note which resembles the converse when the radial curvature is non-positive. Let $v$ be a unit vector in $T_{o}(M)$ and $V$ a vector in $T_{v}\left(T_{o}(M)\right)$ orthogonal to $v$ and $Z$ the Jacobi field along $\gamma=\{\exp t v(t \geqq 0)\}$ defined by $V$. We define $\kappa_{r, z}(t)$ and $\varepsilon_{r, z}(t)$ as follows:

$$
\begin{aligned}
& \kappa_{r}, Z \\
&(t)= \text { the radial curvature of the plane spanned } \\
& \text { by } \partial \text { and } Z \text { at } \exp t v,
\end{aligned}
$$

$\varepsilon_{r, Z}(t)=\frac{1}{|Z|^{2}}\left(\frac{1}{2} D^{2} r^{2}(Z, Z)-|Z|^{2}\right) \quad$ at $\exp t v$.
Using this notation we shall prove the following
Theorem 2. Let $(M, o)$ be a manifold with a pole whose radial curvature is non-positive. Suppose $\exp : T_{o}(M) \rightarrow M$ is a quasi-isometry. Then for any Jacobi field $Z$ along a ray $\gamma$ defined by $V$,
(1) $0 \leqq \varepsilon_{r, z}(t)$,
(2) $\int_{0}^{\infty} \varepsilon_{r, z}(t) / t d t<\infty$,
(3) $0 \leqq \int_{0}^{\infty}-\kappa_{r, z}(t) t d t<\infty$.

Proof. Since the radial curvature is non-positive, we have that $|V| \leqq\left|\exp _{*}(V)\right| \quad$ for any $V \in T_{v}\left(T_{o}(M)\right)\left(v \in T_{o}(M)\right)$.
Therefore there exists a positive constant $\eta \geqq 1$ such that
$|V| \leqq\left|\exp _{*}(V)\right| \leqq \eta|V| \quad$ for any $V \in T_{v}\left(T_{o}(M)\right)\left(v \in T_{o}(M)\right)$.
Let $f(r(x))=\left|Z_{x}\right|(x \in \gamma)$. Thus if $x=\phi_{t}(\exp v)$, then $r(x)=r\left(\phi_{t}(\exp v)\right)$ $=r\left(\exp e^{t} v\right)=e^{t}$. Hence $f(r(x))=\left|Z_{x}\right|=\left|\left(\exp _{*}\right)_{e^{t} v}\left(e^{t} v\right)\right|$ and so $\left|e^{t} V\right|$ $\leqq f(r(x)) \leqq \eta\left|e^{t} V\right|$, that is,
(4) $\quad r|V| \leqq f(r) \leqq \eta r|V|$.

On the other hand, since $Z$ is a Jacobi field, $Z$ satisfies the Jacobi equation along $\gamma$, that is,

$$
\nabla_{\partial}^{2} Z+R(Z, \partial) \partial=0 \quad \text { along } \gamma .
$$

Thus $0=\left(\nabla_{\partial}^{2} Z, Z\right)+\kappa_{r, Z}(r)|Z|^{2}$. Moreover we have $\left(\nabla_{\partial}^{2} Z, Z\right)=\partial\left(\nabla_{\partial} Z, Z\right)$ $-\left|\nabla_{\partial} Z\right|^{2}=(1 / 2)\left(f(r)^{2}\right)^{\prime \prime}-\left|\nabla_{\partial} Z\right|^{2}$. Since the parallel displacement by $V$ is an isometry, $\left|\nabla_{\partial} Z\right| \geqq|\partial| Z| |=\left|f^{\prime}(r)\right|$. Therefore we have ( $\left.1 / 2\right)\left(f(r)^{2}\right)^{\prime \prime}$ $-\left(f^{\prime}(r)\right)^{2} \geqq-\kappa_{r, Z}(r) f(r)^{2}$, and hence
(5) $\quad f^{\prime \prime}(r) \geqq-\kappa_{r, z}(r) f(r)$.

Since $\kappa_{r, z}(r) \leqq 0, f(r)$ is an increasing convex function. Moreover we claim
(6) $|V| \leqq f^{\prime}(r) \leqq \eta|V|$.

In fact, $f^{\prime}(0)=|V|$ by Lemma 3 (2). Thus $|V| \leqq f^{\prime}(r)$. Suppose there exists $r_{o} \geqq 0$ such that $f^{\prime}\left(r_{o}\right)>\eta|V|$. Take a small positive $\varepsilon>0$ such that $f^{\prime}\left(r_{o}\right)>\eta|V|+\varepsilon$. Since $f^{\prime}(r)$ is an increasing function, $f^{\prime}(r)>\eta|V|$ $+\varepsilon\left(r \geqq r_{o}\right)$. Thus $f(r)-f\left(r_{o}\right)>(\eta|V|+\varepsilon)\left(r-r_{o}\right)$. If $r$ is sufficiently large, inequality (4) is contradicted. Therefore we have the inequality (6). Now we can show the inequality (1) as follows:

$$
\begin{aligned}
\varepsilon_{r, Z}(r) & =\frac{1}{|Z|^{2}}\left(\frac{1}{2} D^{2} r^{2}(Z, Z)-|Z|^{2}\right)=\frac{1}{|Z|} H(|Z|)-1 \\
& =\frac{1}{f(r)}\left(r f^{\prime}(r)-f(r)\right) \geqq r(f(r) / r)^{\prime} /(f(r) / r)
\end{aligned}
$$

Since $f(r)$ is an increasing convex function and $f(0)=0, f(r) / r$ is an increasing function and hence $\varepsilon(r) \geqq 0$. Thus we have

$$
\int_{0}^{\infty} \varepsilon_{r, z}(t) / t d t=\log f(r) /\left.r\right|_{0} ^{\infty} \leqq \log \eta|V|-\log |V|=\log \eta<\infty .
$$

This shows (2). By integrating the inequality (5) we have $f^{\prime}(r)-f^{\prime}(0)$ $\geqq \int_{0}^{r}-\kappa_{r, z}(t) f(t) d t$. Since $f^{\prime}(0)=|V|$ and $f(r) \geqq r|V|, \int_{0}^{r}-\kappa_{r, Z}(t) t d t$ $\leqq \int_{0}^{r}-\kappa_{r, z}(t)(f(t) /|V|) d t \leqq(1 /|V|)\left(f^{\prime}(r)-|V|\right) \leqq \eta-1<\infty$. The proof is completed.

## References

[1] Greene, R. E., and Wu, H.: Function theory on manifolds which possess a pole. Lect. Notes in Math., vol. 699, Springer-Verlag, Berlin-HeidelbergNew York (1979).
[2] Siu, Y. T., and Yau, S. T.: Complete Kähler manifolds with non positive curvature of faster than quadratic decay. Ann. Math., 105, 225-264 (1977) : Errata. Ibid., 109, 621-623 (1979).
[3] Wissner, H. W.: Geodätische Konvexität in Riemannschen Mannigfaltigkeiten. Doctoral Dissertation, Berlin (1979).
[4] Wu, H.: Some open problems in the study of noncompact Kähler manifolds. Kōkyuroku RIMS, Kyoto University, no. 340, 12-25 (1978).
[5] -: On a problem concerning the intrinsic characterization of $C^{n}$. Math. Ann., 246, 15-22 (1979).

