71. Singular Hadamard's Variation of Domains and Eigenvalues of the Laplacian

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1980)

§ 1. Introduction. Let Ω be a bounded domain in \mathbb{R}^n with \mathcal{C}^s boundary γ and w be a fixed point in Ω . For any sufficiently small $\varepsilon > 0$, let B_{ε} be the ball defined by

$$B_{\epsilon} = \{z \in \Omega ; |z - w| < \epsilon\}.$$

Let Ω_{ϵ} be the bounded domain defined by $\Omega_{\epsilon} = \Omega \setminus \overline{B}_{\epsilon}$. Then the boundary of Ω_{ϵ} consists of γ and ∂B_{ϵ} .

Let $0 > \mu_1(\varepsilon) \ge \mu_2(\varepsilon) \ge \cdots$ be the eigenvalues of the Laplacian with the Dirichlet condition on $\gamma \cup \partial B_{\epsilon}$. And let $0 > \mu_1 \ge \mu_2 \ge \cdots$ be the eigenvalues of the Laplacian in Ω with the Dirichlet condition on γ . We arrange them repeatedly according to their multiplicities.

The main aim of this note is to give an asymptotic expression of $\mu_i(\varepsilon)$ when ε tends to zero.

We have the following

Theorem 1. Let Ω be a bounded domain in \mathbb{R}^2 with \mathcal{C}^3 boundary γ . Fix j. Assume that the multiplicity of μ_j is equal to one, then (1.1) $\mu_j(\varepsilon) - \mu_j = -2\pi(\log(1/\varepsilon))^{-1}\varphi_j(w)^2 + O((\log(1/\varepsilon))^{-2})$ holds when ε tends to zero. Here φ_j denotes the eigenfunction of the Laplacian with the Dirichlet condition on γ satisfying

$$\int_{\Omega}\varphi_j(x)^2dx=1.$$

For the case n=3, we have the following

Theorem 2. Let Ω be a bounded domain in \mathbb{R}^3 with \mathcal{C}^3 boundary γ . Fix j. Assume that the multiplicity of μ_j is equal to one, then

(1.2) $\mu_i(\varepsilon) - \mu_i = -4\pi\varepsilon\varphi_i(w)^2 + O(\varepsilon^{3/2})$

holds when ε tends to zero. Here φ_j denotes the normalized eigenfunction associated with μ_j .

In §2 we give a rough sketch of proof of Theorem 1. To prove Theorem 1 we employ the singular Hadamard variational formula for the Green's function of the Laplacian due to [5]. The details of this paper will be given in [4].

§ 2. Outline of proof of Theorem 1. In this section we give a rough sketch of proof of Theorem 1.

Let G(x, y) be the Green's function on Ω , that is, it satisfies the following:

Singular Hadamard's Variation

$$\begin{split} & \varDelta_x G(x,y) = -\,\delta(x\!-\!y) \qquad x,y \in \mathcal{Q} \\ & G(x,y)|_{x \in \gamma} \!=\! 0 \qquad \qquad y \in \mathcal{Q}. \end{split}$$

Fix $y \in \Omega$. Then it is well known that

(2.1) $\lim_{x \to y} (G(x, y) + (2\pi)^{-1} \log |x - y|) = C_0 < \infty.$

Fix $w \in \mathcal{Q}$. For any sufficiently small $\varepsilon > 0$, let ω_{ε} be the bounded domain defined by

$$\omega_{\epsilon} = \{x \in \Omega ; G(x, w) \leq (2\pi)^{-1} \log (1/\varepsilon) \}.$$

We put $\beta_{\epsilon} = \Omega \setminus \overline{\omega}_{\epsilon}$.

Let G_{ϵ} and H_{ϵ} be a bounded operator in $L^{2}(\omega_{\epsilon})$ defined by

(2.2)
$$(G_{\epsilon}f)(x) = \int_{\omega_{\epsilon}} G_{\epsilon}(x, y) f(y) dy$$

and

(2.3)
$$(H_{*}f)(x) = \int_{\omega_{*}} (G(x, y) - 2\pi(\log(1/\varepsilon))^{-1}G(x, w)G(y, w))f(y)dy$$

for $f \in L^2(\omega_{\epsilon})$ respectively. Here $G_{\epsilon}(x, y)$ is the Green's function of the Laplacian in ω_{ϵ} . We compare the operators G_{ϵ} and H_{ϵ} . Put $Q_{\epsilon} = H_{\epsilon}$ $-G_{\epsilon}$. We have the following

Lemma 1. The equations

(2.4)
$$\begin{aligned} \Delta(Q_{\epsilon}f)(x) = 0 & x \in \omega_{\epsilon} \\ (Q_{\epsilon}f)(x) = 0 & x \in \gamma \end{aligned}$$

(2.5) $\max_{x \in \partial \beta_{\epsilon}} |Q_{\epsilon}f| \leq I(\epsilon) \|f\|_{L^{2}(\omega_{\epsilon})}$

hold for any $f \in L^2(\omega_s)$. Here we put

(2.6)
$$I(\varepsilon) = \max_{x \in \partial \beta_{\varepsilon}} \left(\int_{\omega_{\varepsilon}} (G(x, y) - G(y, w))^2 dy \right)^{1/2}.$$

We estimate the term $I(\varepsilon)$ as follows:

Lemma 2. The inequality

(2.7) $I(\varepsilon) \leq C_1 \varepsilon |\log \varepsilon|^{1/2}$

holds for sufficiently small ε . Here C_1 is a positive constant independent of ε .

In the following $C_2, C_3 \cdots$ are constants independent of ε .

Let $A_{r,\delta}$ be the annulus defined by

$$A_{r,\delta} \!=\! \{\!x \in \mathbf{R}^{\scriptscriptstyle 2} \text{ ; } \delta \!<\! |x \!-\! w| \!<\! r \}$$
 .

Then it is easy to see that there exists a positive constant q independent of ε such that

 $A_{q,\,\mathfrak{s}/q}\!\supset\!\omega_{\mathfrak{s}}$

(2.8) holds.

By Lemma 1, (2.8) and by the maximum principle for harmonic functions we can get the following

Lemma 3. The inequality (2.9) $\|Q_{\epsilon}f\|_{L^{2}(\omega_{\epsilon})} \leq C_{2}(\log (1/\varepsilon))^{-1}I(\varepsilon) \|f\|_{L^{2}(\omega_{\epsilon})}$ holds for any sufficiently small ε .

S. OZAWA

Let \tilde{H}_{ϵ} be the bounded operator in $L^{2}(\Omega)$ defined by (2.10) $(\tilde{H}_{\epsilon}h)(x) = \int_{\Omega} (G(x, y) - 2\pi (\log (1/\epsilon))^{-1} G(x, w) G(y, w)) h(y) dy$ for $h \in L^{2}(\Omega)$.

Now we compare H_{ϵ} and \tilde{H}_{ϵ} . Let ψ be an eigenfunction of \tilde{H}_{ϵ} satisfying $\|\psi\|_{L^{2}(\Omega)} = 1$ and $\tilde{\lambda}(\varepsilon)$ be its eigenvalue. Then (2.11) $\tilde{H}_{\epsilon}\psi = \tilde{\lambda}(\varepsilon)\psi$. Let χ_{ϵ} be the characteristic function of ω_{ϵ} . We put $\psi_{1} = \chi_{\epsilon}\psi$ and $\psi_{2} = \psi$

 $-\psi_1$. For the sake of simplicity, we put

 $h_{s}(x, y) = G(x, y) - 2\pi (\log (1/\varepsilon))^{-1} G(x, w) G(y, w).$

Then (2.11) is equivalent to the following systems of equations (2.12) and (2.13):

$$(2.12) \int_{\omega_{\epsilon}} h_{\epsilon}(x, y)\psi_{1}(y)dy + \int_{\beta_{\epsilon}} h_{\epsilon}(x, y)\psi_{2}(y)dy = \tilde{\lambda}(\varepsilon)\psi_{1}(x) \qquad x \in \omega_{\epsilon}$$

$$(2.13) \int_{\omega_{\epsilon}} h_{\epsilon}(x, y)\psi_{1}(y)dy + \int_{\beta_{\epsilon}} h_{\epsilon}(x, y)\psi_{2}(y)dy = \tilde{\lambda}(\varepsilon)\psi_{2}(x) \qquad x \in \beta_{\epsilon}.$$
Also use hence

Also we have

 $\|\psi_1\|_{L^2(\omega_{\epsilon})}^2 + \|\psi_2\|_{L^2(\beta_{\epsilon})}^2 = 1.$

We can get the following

Lemma 4. The inequality

(2.15)
$$\left(\int_{\omega_{\epsilon}} \left(\int_{\beta_{\epsilon}} h_{\epsilon}(x,y)\psi_{2}(y)dy\right)^{2} dx\right)^{1/2} \leq C_{3} \varepsilon \|\psi_{2}\|_{L^{2}(\beta_{\epsilon})}$$

holds for any sufficiently small ε .

By Lemma 4 and (2.12), we get

 $\begin{array}{ll} (2.16) & \|H_{\epsilon}\psi_{1}-\tilde{\lambda}(\varepsilon)\psi_{1}\|_{L^{2}(\omega_{\epsilon})} \leq C_{3}\varepsilon^{1/2} \|\psi_{2}\|_{L^{2}(\beta_{\epsilon})}.\\ \text{We can also deduce the following inequality (2.17) from (2.13):}\\ (2.17) & |\tilde{\lambda}(\varepsilon)| \|\psi_{2}\|_{L^{2}(\beta_{\epsilon})} \leq C_{4}\varepsilon^{1/2} \|\psi_{1}\|_{L^{2}(\omega_{\epsilon})} + C_{4}\varepsilon |\log \varepsilon| \|\psi_{2}\|_{L^{2}(\beta_{\epsilon})}.\\ \text{There exists a positive constant }\lambda^{*} \text{ such that } |\tilde{\lambda}(\varepsilon)| > \lambda^{*} \text{ holds for any sufficiently small }\varepsilon. \text{ Therefore by (2.16) and (2.17), we obtain }\\ (2.18) & \|(H_{\epsilon}-\tilde{\lambda}(\varepsilon))\psi_{1}\|_{L^{2}(\omega_{\epsilon})} \leq C_{5}\varepsilon \|\psi_{1}\|_{L^{2}(\omega_{\epsilon})}\\ \text{and} \\ (2.19) & \|\psi_{1}\|_{L^{2}(\omega_{\epsilon})}^{2} \geq 1/2 \end{array}$

for any sufficiently small ε .

We now study the eigenvalues of G_{ϵ} , \tilde{H}_{ϵ} and H_{ϵ} . In the first place we compare the eigenvalues of \tilde{H}_{ϵ} and G. It is easily seen that the family $\epsilon \rightarrow \tilde{H}_{\epsilon}$ is a holomorphic perturbation family of selfadjoint operators. Therefore we can apply the perturbation theory of eigenvalues in [1] to the pair \tilde{H}_{ϵ} and G. And we have the following

Lemma 5. Let λ' be a fixed simple eigenvalue of G. Fix small real neighbourhood U of λ' . Then there exists a small positive constant ε_2 such that the following property holds:

For any $\varepsilon \in (0, \varepsilon_2)$, there exists only one eigenvalue $\lambda'(\varepsilon)$ of \tilde{H}_{ε} with multiplicity 1 in U. And $\lambda'(\varepsilon)$ is represented as

 $\lambda'(\varepsilon) = \lambda' - 2\pi (\log (1/\varepsilon))^{-1} (\lambda')^2 \varphi(w)^2 + O((\log (1/\varepsilon))^{-2})$

when ε tends to 0. Here $\varphi(x)$ denotes the normalized eigenfunction of G associated with λ' .

In the next place, we compare the eigenvalues of G_{ϵ} and H_{ϵ} . Let $0 > \tilde{\mu}_1(\varepsilon) \ge \tilde{\mu}_2(\varepsilon) \cdots$ be the eigenvalue of the Laplacian in ω_{ϵ} with the Dirichlet condition on $\partial \omega_{\epsilon}$. Then by the theorem in [3], we have the following

Lemma 6. For any fixed j, $\lim_{\varepsilon \to 0} \tilde{\mu}_j(\varepsilon) = \mu_j$. Therefore if μ_j is simple, $\tilde{\mu}_j(\varepsilon)$ is simple for any sufficiently small ε .

Since there is a correspondence between eigenvalue of the Laplacian and the Green operator, we get the following from Lemma 6.

Lemma 7. Let λ' be as above. Fix a sufficiently small real neighbourhood V of λ' . Then there exists a constant $\varepsilon_3 > 0$ depending on V such that the following holds:

In V, there exists only one eigenvalue $\lambda''(\varepsilon)$ of G_{ε} for any fixed $\varepsilon \in (0, \varepsilon_3)$.

We see that $\lambda''(\varepsilon)$ is isolated and simple for small ε and $\lim_{\varepsilon \to 0} \lambda''(\varepsilon) = \lambda'$. Therefore by Lemma 3 and a slight modification of theorem in § 134 of [2], we get the following

Lemma 8. Let λ' be as in Lemma 5. And $\lambda''(\varepsilon)$ be as above. Fix a small real neighbourhood V_1 of λ' . Then there exists a constant ε_4 depending on V_1 such that the following hold: For any $\varepsilon \in (0, \varepsilon_4)$, $\lambda''(\varepsilon) \in V_1$. Fix an arbitrary $\varepsilon \in (0, \varepsilon_4)$, then there exists only one eigenvalue $\lambda'''(\varepsilon)$ of H_{ε} with multiplicity 1 in V_1 . Moreover,

holds.

$$|\lambda^{\prime\prime\prime}(\varepsilon)\!-\!\lambda^{\prime\prime}(\varepsilon)|\!\leq\!C_{6}arepsilon(\log{(1/arepsilon)})^{-1/2}$$

In the final step, we compare the eigenvalues of \tilde{H}_{ϵ} and H_{ϵ} . For this purpose, the following is useful.

Lemma 9. Let B be a compact selfadjoint operator in a Hilbert space \mathfrak{H} . Suppose that the following holds:

(2.20) There exists $\eta \in \mathfrak{H}$ such that $\|\eta\| = 1$.

(2.21) There exists $\lambda^{(4)} \neq 0$, and $||B\eta - \lambda^{(4)}\eta|| < \varepsilon$ where ε is a sufficiently small positive constant.

Then there exists at least one eigenvalue $\lambda^{(5)}$ of B in the interval $(\lambda^{(4)}-2\varepsilon, \lambda^{(4)}+2\varepsilon)$.

Since we have (2.18) and (2.19), we can apply Lemma 9 to H_{ϵ} . Then we get the following

Lemma 10. Let $\lambda'(\varepsilon)$ be the eigenvalue of \tilde{H}_{ϵ} in Lemma 5. Let V_2 be a fixed sufficiently small real neighbourhood of λ' . Then there exists a constant ε_5 depending on V_2 such that the following holds: For any fixed $\varepsilon \in (0, \varepsilon_5)$, there exists at least one eigenvalue of H_{ϵ} in the subinterval $(\lambda'(\varepsilon) - C_7 \varepsilon, \lambda'(\varepsilon) + C_7 \varepsilon)$ of V_2 .

No. 7]

We summarize Lemmas 5–10 and we use the relation of eigenvalues of the Laplacian and the Green operators to get the following

Lemma 11. Fix j. Assume that μ_j is simple, then the relation $\tilde{\mu}_j(\varepsilon) = \mu_j - 2\pi (\log (1/\varepsilon))^{-1} \varphi_j(w)^2 + O((\log (1/\varepsilon))^{-2})$

holds when ε tends to zero.

It is easy to see that there exists a positive constant C>1 independent of ε such that $\omega_{C_{\epsilon}} \subset \Omega_{\epsilon} \subset \omega_{\epsilon/C}$ holds for any sufficiently small ε . Since $\tilde{\mu}_{j}(C\varepsilon) \leq \mu_{j}(\varepsilon) \leq \tilde{\mu}_{j}(\varepsilon/C) < 0$, and $\tilde{\mu}_{j}(C\varepsilon) - \tilde{\mu}_{j}(\varepsilon/C) = O((\log (1/\varepsilon))^{-2})$ when ε tends to zero, then we get Theorem 1.

References

- T. Kato: Perturbation theory for linear operators. Springer, Heidelberg-New York (1966).
- [2] F. Riesz and B. Sz-Nagy: Leçons d'Analyse Fonctionnelle. Budapest (1952).
- [3] J. Rauch and M. Taylor: J. Funct. Anal., 18, 27-59 (1975).
- [4] S. Ozawa: Singular Variation of Domains and Eigenvalues of the Laplacian (to appear).
- [5] M. Schiffer and D. C. Spencer: Functionals of Finite Riemann Surfaces. Princeton, New Jersey (1954).