91. Free Arrangements of Hyperplanes and Unitary Reflection Groups^{*)}

By Hiroaki TERAO

Department of Mathematics, International Christian University

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 13, 1980)

1. Free arrangements. We call a non-void finite family of hyperplanes in C^{n+1} (or $P^{n+1}(C)$) an affine (resp. projective) n-arrangement. A set X is simply called an n-arrangement if X is either an affine narrangement or a projective n-arrangement. An n-arrangement X is called to be central when $\bigcap_{H \in X} H \neq \phi$. Denote $\bigcup_{H \in X} H$ by |X|.

Let X be a central affine *n*-arrangement. By an appropriate translation of the origin we can assume that $\bigcap_{H \in X} H$ contains the origin **O** in C^{n+1} . Let $Q \in C[z_0, \dots, z_n]$ be a square-free defining equation of |X|. By \mathcal{O} denote we $\mathcal{O}_{C^{n+1},O}$. Then

 $D(X) := \{\theta; a \text{ germ at the origin of holomorphic vector fields}$ such that $\theta \cdot Q \in Q \cdot \mathcal{O}\}$

is an \mathcal{O} -module. We call X to be *free* if D(X) is a free \mathcal{O} -module.

Assume that a central affine *n*-arrangement X is free. Let $\{\theta_0, \dots, \theta_n\}$ be a system of free basis for D(X) such that each θ_i is homogeneous of degree d_i . (θ_i is homogeneous of degree d_i if θ_i has an expression

$$\theta_i = \sum_{j=0}^n f_j (\partial / \partial z_j),$$

where each $f_j \in C[z_0, \dots, z_n]$ is either 0 or homogeneous of degree d_i .) We call the integers (d_0, \dots, d_n) the generalized exponents of X. They depend only on X [7].

Let X be a projective *n*-arrangement. Denote $P^{n+1}(C)$ simply by P^{n+1} . Let $Q \in C[z_0, \dots, z_{n+1}]$ be a homogeneous polynomial defining a set $|X| \subset P^{n+1}$. Then there exists a unique central affine (n+1)-arrangement \tilde{X} such that

$$V(Q) = |\tilde{X}| \subset C^{n+2}.$$

We call X to be *free* if \tilde{X} is free.

Assume that a projective *n*-arrangement X is free. Let (d_0, d_1, \dots, d_n) be the generalized exponents of \tilde{X} , then we can assume that $d_0=1$ (due to the existence of the Euler vector field

$$\sum_{i=0}^{n} z_{i}(\partial/\partial z_{i})).$$

The generalized exponents of X are defined to be (d_1, \dots, d_n) .

^{*)} The author gratefully acknowledges support of this project by the Grant in Aid for Scientific Research of the Ministry of Education No. 574047.

Next let X be a (perhaps non-central) affine *n*-arrangement. Identify C^{n+1} with a Zariski open set $P^{n+1} \setminus H_{\infty}$, where H_{∞} is a hyperplane in P^{n+1} . Define a projective *n*-arrangement

$$X_{\infty} = X \cup \{H_{\infty}\}.$$

We call X to be *free* if X_{∞} is free. Assume that a projective *n*-arrangement X is free. Then the *generalized exponents* of X are defined to be those of X_{∞} . This definition is consistent with that of the generalized exponents of a free central affine *n*-arrangement.

We have thus defined the generalized exponents of any free *n*-arrangement. Let X be an *n*-arrangement and (d_0, \dots, d_n) be its generalized exponents. Put

 $M = \begin{cases} {oldsymbol{\mathcal{C}}^{n+1} ig| X|} & (ext{when } X ext{ is affine}) \ {oldsymbol{P}^{n+1} ig| X|} & (ext{when } X ext{ is projective}). \end{cases}$

Let $P_M(t)$ be the Poincaré polynomial of M. Then we have

Theorem 1. $P_{M}(t) = \prod_{i=0}^{n} (1+d_{i}t).$

The proof of Theorem 1 highly depends upon the combinatorial formula (using the Möbius functions) for $P_{M}(t)$ ([2, (5.2)], [9, Theorem A]) and the theory of the Hilbert polynomial of $\mathcal{O}/J(Q)$. (J(Q) stands for the Jacobian ideal of Q in \mathcal{O} .) The complete proof will be found in [8] [9].

Let $G \subset \operatorname{GL}(n+1; \mathbb{R})$ be a finite Coxeter group acting on C^{n+1} . Then the set of the reflection hyperplanes makes a central affine arrangement. Such an arrangement is called a *Coxeter arrangement*. We know that a Coxeter arrangement is free and that the exponents of G coincide with our generalized exponents of X [4]. In this special case Theorem 1 was obtained by Shepherd-Todd-Brieskorn [6] [1].

But the class of the free central affine arrangement is far wider than that of the Coxeter arrangements. In fact many examples show that the freeness of arrangement is a combinatorial property [7].

The following theorem gives another important class of free central arrangements :

Theorem 2. Let $G \subset GL(n+1; C)$ be a finite group generated by unitary reflections. Then the set of the reflection hyperplanes makes a free central affine arrangement.

This will be proved in the following section.

2. The proof of Theorem 2. Put $V = C^{n+1}$. We regard V as a unitary space with the ordinary hermitian form $\sum_{i=0}^{n} x_i \overline{y}_i$. Let $G \subset U(n+1)$ be a finite group generated by unitary reflections. Put

$$e_i = {}^{\iota}[0, \cdots, 0, 1, 0, \cdots, 0] \quad (0 \le i \le n),$$

i-th place

and $\{e_0, \dots, e_n\}$ is a system of orthonormal basis for V. Then $g \in G$ acts on V by

 $[g \cdot e_0, \cdots, g \cdot e_n] = [e_0, \cdots, e_n] \cdot g,$

i.e., $g \cdot e_j = \sum_{i=0}^n g_{ij} e_i$ (g_{ij} is the (i, j)-entry of g).

Let V^* be the dual *C*-vector space of *V*. Let $\{z_0, \dots, z_n\} \subset V^*$ be the system of the dual basis of $\{e_0, \dots, e_n\}$. Then $g \in G$ acts on V^* by $[g \cdot z_0, \dots, g \cdot z_n] = [z_0, \dots, z_n] \cdot {}^tg^{-1}$,

which is the contragradient representation. This representation of
$$G$$
 induces another representation of G on $S=S(V^*)$ (the symmetric product of V^*) by

 $g \cdot f(z_0, \dots, z_n) = f(g \cdot z_0, \dots, g \cdot z_n)$ $(f \in S \simeq C[z_0, \dots, z_n]).$ Thus $g \in G$ acts on $S \otimes V$ by

$$f \otimes v \mapsto (g \cdot f) \otimes (g \cdot v) \qquad (f \in S, v \in V).$$

In this situation, there exist $u_0, \dots, u_n \in (S \otimes V)^d$ such that $(S \otimes V)^d = S^d u_0 \oplus \dots \oplus S^d u_n$

and each $a_{ij} \in S$ $(0 \le j \le n)$ is a homogeneous polynomial of z_0, \dots, z_n of degree d_i , where

$$u_i = \sum_{j=0}^n a_{ij} \otimes e_j$$
 $(0 \le i \le n).$

Define $\varDelta \in S$ by

$$\Delta = \det(a_{ij}).$$

Let X be the set of the reflection hyperplanes of G. The following proposition was proved by Orlik-Solomon [3]:

Proposition 1. (i) Δ is a square-free defining equation of |X|. (ii) Let $f \in S$. Then $g \cdot f = (\det g)^{-1} \cdot f$ for any $g \in G$ if and only if $f \in S^{a} \cdot \Delta$.

Define vector fields on V by

$$\mathfrak{X}_i = \sum_{j=0}^n a_{ij} (\partial / \partial z_j) \qquad (0 \leq i \leq n).$$

Proposition 2. A set $\{\mathfrak{X}_0, \dots, \mathfrak{X}_n\}$ is a system of free basis for D(X).

Proof. Since u_i is invariant under G, we have

$$\sum_{j} a_{ij} \otimes e_{j} = \sum_{j} (g \cdot a_{ij}) \otimes (g \cdot e_{j}) \qquad (0 \le i \le n)$$

and thus

$$\begin{aligned} (*) & (a_{ij}) = (g \cdot a_{ij}) \cdot {}^{t}g. \\ \text{Then} \\ & [g \cdot (\mathfrak{X}_{0} \cdot \varDelta), \cdots, g \cdot (\mathfrak{X}_{n} \cdot \varDelta)] \\ &= [\partial(g \cdot \varDelta)/\partial(g \cdot z_{0}), \cdots, \partial(g \cdot \varDelta)/\partial(g \cdot z_{n})] \cdot {}^{t}(g \cdot a_{ij}) \\ &= (\det g)^{-1} [\partial \varDelta/\partial(g \cdot z_{0}), \cdots, \partial \varDelta/\partial(g \cdot z_{n})] \cdot g^{-1} \cdot {}^{t}(a_{ij}) \\ & (by \text{ Proposition 1 (ii) and } (*)) \\ &= (\det g)^{-1} [\partial \varDelta/\partial z_{0}, \cdots, \partial \varDelta/\partial z_{n}] \cdot (\partial z_{i}/\partial(g \cdot z_{j})) \cdot g^{-1} \cdot {}^{t}(a_{ij}) \\ &= (\det g)^{-1} [\partial \varDelta/\partial z_{0}, \cdots, \partial \varDelta/\partial z_{n}] \cdot {}^{t}(a_{ij}) \\ & (by g = (\partial z_{i}/\partial(g \cdot z_{j}))) \\ &= (\det g)^{-1} [\mathfrak{X}_{0} \cdot \varDelta, \cdots, \mathfrak{X}_{n} \cdot \varDelta]. \end{aligned}$$

By combining this with Proposition 1 (ii), we have

 $\mathfrak{X}_i \cdot \varDelta \in S^{\scriptscriptstyle G} \cdot \varDelta$ (0 $\leq i \leq n$).

This implies that $\mathfrak{X}_i \in D(X)$ $(0 \le i \le n)$ because of Proposition 1 (i). Since $\varDelta = \det(a_{ij})$ is a square-free defining equation of X, we know that a set $\{\mathfrak{X}_0, \dots, \mathfrak{X}_n\}$ is a system of free basis for D(X) in the light of [5, (1.8) ii)].

The following is obtained from Theorems 1 and 2:

Corollary. Put $d_i = \deg \mathfrak{X}_i$ $(0 \le i \le n)$. Then the Poincaré polynomial of $C^{n+1} \setminus |X|$ is equal to

$$\prod_{i=0}^n (1+d_i t).$$

This result was very recently proved by Orlik-Solomon [3]. Thus Theorem 1 was proved to be a generalization of the main theorem in [3].

References

- [1] E. Brieskorn: Sur les groupes de tresses (d'après V. I. Arnold). Séminaire Bourbaki 24^e année, 1971/72, no. 401. Lect. Notes in Math., vol. 317, Berlin-Heidelberg-New York, Springer (1973).
- [2] P. Orlik and L. Solomon: Combinatorics and topology of complements of hyperplanes. Invent. Math., 56, 167-189 (1980).
- [3] ——: Unitary reflection groups and cohomology. Ibid., 59, 77–94 (1980).
- [4] K. Saito: On the uniformization of complements of discriminant loci. Symp. in Pure Math., Williams College, 1975, Providence, AMS (1977).
- [5] ——: Theory of logarithmic differential forms and logarithmic vector fields.
 J. Fac. Sci. Univ. Tokyo, Sect. IA, 27, 265–291 (1980).
- [6] G. C. Shepherd and J. A. Todd: Finite unitary reflection groups. Canad. J. Math., 6, 274-304 (1954).
- [7] H. Terao: Arrangements of hyperplanes and their freeness I. J. Fac. Sci. Univ. Tokyo, Sect. IA, 27, 293-312 (1980).
- [8] ——: Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula (to appear).
- [9] ——: On Betti numbers of complement of hyperplanes (to appear).

392