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§1. Introduction. Recently, Hida has introduced generalized
Browmnian functionals to discuss the analysis on the L*-space (L% built
on the measure space of white noise B(t). The idea of Hida’s analysis
is to take {B(t)} to be the system of the variables of Brownian func-
tionals, so that we are led to introduce multiplication operators B(t)
and the partial differential operators 5/0B(t) as well as renormalization
of functions of the B(¢)’s [1,2]. We will give, in this series of notes
Parts I-V, a systematic treatment of his analysis and establish formulae
which would make easier to apply his theory.

We will discuss, in Part I, a general theory on Fock spaces and
Hilbert spaces of non-linear functionals of special types, which is a
slight modification of the works of Segal [3], [4] and of Hida-Ikeda [5].

In Part II, the L*-space (L*)=L¥E*, ) will be discussed, where
ECE,c&* is a Gelfand triplet and p is the measure of Gaussian white
noise on &*. With the help of transformation S,

(SPO=]_ow+Hdu@), §6, pe W,

we can apply the analysis established in Part I. We will treat oper-
ators 0/0x(t), (3/0x(t)*, x(t)- =0/8x(t)+ (3/3x(t))* and so forth to carry
on the proposed analysis of Brownian functionals.

In Part III, we will describe Hida’s analysis by our formulation,
partly. In Part IV, Laplacians on (L?) will be discussed. In PartV,
we will discuss Hida-Streit’s approach to Feynman path integral in
line with our formulation.

§2. Triplets of Fock spaces. Let (E,, (¢,1),) be a separable real
Hilbert space and let us identify its dual E¥ with E,. Suppose that £ is
a dense linear subset of E,. Let {(, ),; »>0} be a consistent sequence
of inner products defined on £ such that
2.1 IEh<plléh<---<p"l¢ll, ---, with pe(0,1).

Let E, be the completion of £in || |,, and E_,=E* be the dual of F,

with the inner product (, )_,, for p>>0. Then we have inclusions
...CE,,CcE,C.---CE,C...CE_,CE_,_,---.

Let E., be the projective limit of the system {(Z,,|| |,);»<Z}. Sup-

pose that &=FE, as a set and induce the topology by this equality.
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The dual £* of £ is the inductive limit E_., of the system {(F,, | |[,)}.
Denote the natural injection from £, to E, by ¢, ,, ¢>p. Then an iso-
morphism 6, from E} to £/, and 6} =6_, are defined by the following
conditions ;

2.2) (w, &)=(0,2,8),=(x,0%¢)_,, £eE,, xc £},

N.B. Generally we denote by the bracket ¢, > the canonical
bilinear form between a dual pair.

We are now ready to introduce a sequence of Fock spaces as fol-
lows. Let E®" be the n-fold symmetric tensor product and ¢®%» be
their direct sum with weight vn!; thatis, §=(Fo, f1, - - -5 Sy « - +) € €92,
z"E=f, € E%", has Hilbert norm

@3) |8 oz, =3 nl [l

Then the injection ¢, ,, induces injections £ from E%" to E$" and ¢®».«

from e®F¢ to e®», naturally. By these injections, we get a system of

Hilbert spaces {¢%77; p € Z} such that ¢®”-» is the dual of ¢®%», Denote

the projective limit and the inductive limit of the system {(¢®Z», ¢®.4)

»,q € Z} by ¢4¢ and ¢®¢", respectively. Then e®¢* is the dual of ¢®¢,
For a given & in E,, define an element ¢®¢ in ¢®%» by

(204) 6®€E(1,f,§®2/2!, ’€®n/n!: )°
Then we have for &,neF,, xeF_,
(2.5) (%, %) 0m,=€"92 and (€%, Bty =@,

Theorem 2.1. (i) If the injection ¢, , is of Hilbert-Schmidt type
and has norm ||y, llz-s<1, so is e® e qnd its norm is dominated by
A—lelfr-e) "2

(i) If € is a nuclear space, so is e®€.

For a fixed p, define a symmetric tensor product f,&g, of S n€ E’f?m
and g,cE® by the symmetrization of the tensor product f,Rg,
e E®™», Let f, be in E and G, be in E®, n>k>0. Then
<Gk®F n-1s Sy i8 & continuous linear functional of F',_, € E®"~®, There
exists an element of E®-*, denote it by G,*f,, such that
(2.6) (F iy Getfo)y =(G@OF s 1.

Lemma 2.2. For g, e E®, f, e E®"®, f e ES" and G, e E%,

1987 -sllzsn <N gel66% || fo- im0,

|G Fullsdin-v < || Gallst | .

Define the following operators on e®*» for g, ¢ E®* and G, e % :

5 — S ,,,,__:ﬂl_!____, ”E
2.7 (G5 ‘_nz_,; —7)] G x5,
2.8 a*(g)E Ei 9, &5, for & e e®7»,
n=0

Theorem 2.3. For g, € E$* and G, € E%, we have
(1) “a/(Gk)€®:p.p+1“L?(e®Ep+1_'e®Ep)S” G, “E@f, (L — g9)~ E 0¥ (R 1),
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¥ (9B 7| a8y 1oy < || 0 llg&r (L—p*) =Dk 1),
() T, a(GHEY=La*(G)T, 5>,
for U e e®-v.-2+168F 241 08F-1 g F € e¥r.0+168E 41 ¢OF,
Theorem 2.4. For f,eE%", g,eE%, feE, and GeE_,, we
have
a(f(g)=a(/8g),  a*(Fn)a*(g)=a*(f.&g.)
and
aA@a*(f)—a*(NaG) =G, f).

§ 3. Hilbert spaces of non-linear functionals on £. Denote by
K, the linear combination of non-linear functionals {e¢-=="%;ye &}
inée&=FE,. Weintroduce a sequence of inner products such that
(3.1) (€m0 ® | glrmo0,a ) () = gltpooTsiproll,

Denote by &® the completion of K, with respect to | |®. Then F*®
is a space of continuous non-linear functionals on & and the inclusions
3.2) GErhC g, peZ,

hold. Let F=9“ be the projective limit of F» and F*=F > be the
inductive limit of .

Theorem 3.1. For co>p> — oo, F® is isomorphic to e®F» by the
isomorphism 0E-F

66T : B—f"F(8) =¥ -»=¢, 5.

Remark 3.2. Let X(¥,) be the Hilbert space with the reproduc-
ing kernel 9, co >p> — oo (see Aronszajn [6], Hida-Ikeda [5]). Then
the map X~ from K(E_,) to F®;

8.3) U——0KX~F(U)=U(c_,,.8),
is one-to-one onto linear. In other words, U(¢) in F® can be extended
to a continuous functional U,(x) on E'_, and U,(») is in K(&_,).

A non-linear functional U(¢) on E=F., is n-times E ~-Fréchet dif-
ferentiable if there exist k-ple symmetric linear forms U (&; 5, - -+, 7)
for 1<k<n, satisfying the following (3.4) and (3.5);

G4 |UE+D—U@=3 | UPEinn, ) =olll)),
(B.5) |UP(E; 90 -+, pd|<eonst. [,y llep,umillyy 1<k
Then U™(&; y,, - - -, 7p,) i8 called F'réchet derivative of U(¢) of order n.
If U(¢) is n-times E ,-Fréchet differentiable, then U™(¢; 5, - - -,%,) can
be regarded as a continuous n-ple symmetric linear form on E,.
Theorem 3.3. If U(&) is in FP, then
(i) U is arbitrary times E_,-F'réchet differentiable and

UE+D=U@+3 - UVE57, 1.

(ii) There exists 5 € ®F» gnd U™ can be extended to a linear func-
tional on E®,,, in such way that for F, e E®r,,
U™(e; Fn)=<Fn®e®:_p,we, 5>
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=(e®r-rr=t q(F )e¥r-125),
(iii) For fixed p,, -+, 9, € E_,, the mapping from F® to FP-:
UE@——>U™(E;5 91+ 5 70) 18 continuous.

8§4. Traceable space E. In what follows, we will treat only
Hilbert spaces of functions which are naturally imbedded into L* spaces
and their duals. Therefore, for simplicity, we can omit the notations
of injections without confusions. Let 7 be a separable metrizable
space with a o-finite Borel measure v. Let E be a dense linear subset
of L¥(T,v) which is itself a Hilbert space with inner product (, ), with
1€1lz=>116 2z,

Definition 4.1. The space E is called traceable if the linear func-
tional 9, : £&—&(t) € R for & € E is well defined in E* and if the mapping
t—d, € E* is strongly continuous in ¢t e T.

If E is traceable, then every element & of E is continuous on T and
80 is f, e E®" on T*. For any f, € E®", the mapping t—d,xf, from T
to E®*-Y is continuous in ¢t. Further
4.1) 0% %0, % =T (b, -+, T,)
is a continuous function belonging to L*(T",v") and this realized the
injection ®*. A dual element F', € E*®" is not necessarily a function
on T, but it is convenient to write F',(u,, - - -, u,) as if a function on 7.

Lemma 4.2. Let E be traceable. Then the injection ¢ from E
into LA(T,v) satisfies

I81r= [ 1 du®=lEr-s.

Lemma 4.3. Assume that ||3|P<oco. If f is in E®*, then f(t,t)
=4,%0,f is integrable and

[, 7, 0a0=3 @, 1>

holds for any c.om.s. {5} in LXT,v). Furthermore, there exists an
o.n.s. {p{} in LXT,v) such that y] € E and that

=z oni&yl  with 2ol <eo.

Since 6, € E*, a,=a(5,) is an operator on e®* and a*=a*(s,) is an
operator on e®#*, If U(¢) is E*-differentiable, then U'(¢; ») can be ex-
tended to a bounded linear functional on E* for fixed £ ¢ E. Further-
more U’'(&; ©)=U’(¢: 4, is a function on 7', which belongs to E.

We now return to the setup in §3. We assume that E is equal
to L¥(T,v) and that {F,},., are given as in § 1.

Theorem 4.4. Suppose that the injection ¢, : E\—L¥T,v) is
traceable. Then

(i) the functional derivative

0
U@ UE;t
0 (¢ &0
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18 o continuous opemtgr on F and is strongly continuous in t.
Specially, if UE)=(8, e**) with 5 € e®%, then

4.2) U5 =08, 6%y =3, n(dn"5, ey,

(ii) The multiplication
§@)- : UG—>EDU®

is a continuous operator on F* and strongly continuous in t.

Remark 4.5. If U(8) is in G, with p>1, then U®(&; ¢, - - -, t,)
is in E®*. For a given U(§) e &< and a fixed £€&, U (E;p, -+, 70)
is a continuous multi-linear functional on £,, and hence we can define
5/0&(t,)- - -6/66t,) as an operator valued generalized function in
(tyy -+ -, t). In particular, if U(&) is in ', then there exists an L*-
function U®(&; ¢, - - -, t)=(3/06(t)- - - 6/06(t,))U(), such that

4.3)  UPEsny--Hsp=| UPE;t, -, tdn(E): - -ntdv”.
Tk
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