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Introduction. This is again a continuation of my two preceding
papers® [3]. We shall be concerned with algebras with involution and
Hopf maps.

§1. Algebras with involution. Let K=F, (¢: odd) and let A be
an associative algebra with involution «. (See [1] for basic facts on
such algebras). Take an invertible element § € A such that

1.1) =0, e==+1
and consider the mapping F': A—A given by

1.2) F(x)=ux"6z, rxeA.

Clearly, F' is a quadratic mapping of the underlying vector space of A
into itself. In this section, we shall determine invariants pz, o» for
this mapping when the algebra (4, «) is simple. Since all finite division
rings are commutative, there are 4 types of such algebras, up to the
change of ground fields:

(i) A=K,@K,, (z,9)=("y,‘m), t(x,y)=tr @)+tr (),

(ii) A=K,, xz*=S"''%2S, ‘S=8§, r(@)=tr (),

(i) A=K,, o=J"'l, J=<_01 (1)) (@) =tr (),

(ivy A=L,, L=F,, =SS, 'S=8, r(x)=tr@)+tr ().
(Here = means the reduced trace of the algebra A over K, tr (x) means
the trace of the matrix « and the bar means the conjugation of the
quadratic extension L/K.) Note that the trace has the properties:

1.3) c(@)=1(), c(xy)=r(yx), the mapping (x,y)—(z,y) is a

non-degenerate symmetric bilinear form on A.
Therefore, to each 1€ A*, the dual space of A, there corresponds
uniquely an element a=a, € A such that 1(x)=z(ax). Conversely, any
a € A defines a linear form i1=1, by A(x)=r(ax). We have

(1.4) F(x)=i(F(x))=t(ax6x).

Put

15 < y>x=%(Fx(x+y)—Fz<x)—Fl(y».

Then, we have

*  As in my former paper (II), (I.2.3) will mean (2.8) in (I).
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1.6) r,=rank F,=dimA—dimI, I,={xeA;{x,y),=0
for all y € A}.
A simple computation using (1.3) shows that

A (&, yd= %r((axaoJreaax«a)y).

Hence, by (1.3), (1.6), we have

1.8) zel,zax*+eax*=0x(a*+:a)=0,
which, in particular, shows that I, is a left ideal of A. Now, remem-
ber that only 2’s for which 7, is odd are meaningful for the computation
of pr (see (II. 1.4)). Since every left ideal of our algebra A is a direct
sum of minimal left ideals whose dimensions are easily determined,
we see already from (1.6) that p,=0 in the following cases: (i) 7: even,
(ii) r: even, (iii) and (iv). Therefore, it remains to consider the cases:
(i) »: odd, (ii) »: odd.

Case (i) r:odd. If 2=2, with ¢=(a, b) € A, we have

1.9 IL={z=@,y)cA; z2(c*+ec)=0}.
If we put h=:b+-ea, then

1.10) I,={(x,y) e K,®K,; xh=y'h=0}=M®N,
where M={xeK,; xh=0}, N={yeK,; y'h=0}. If rank h=d, then,
normalizing 4 by multiplying non-singular matrices on both sides, we
see that dim M=r(r—d). Since rank ‘h=d, it follows that dim I,
=2r(r—d) is even as well as dim A=27%, and we have p,=0, again.

Case (ii) 7: odd. In this case, A=K,, r:0dd, a*=S"!S, ‘S=S
and

(1.11) I,={xe A; x(a"+ea)=0}, e==+1.
As above, we see that dim I,=r(r—d) if d=rank (a*+ca)=rank (*(Sa)
+¢(Sa)), and so r,=dim A—dim I,=»d. Hence, only the case where
d is odd is meaningful. If e=—1, d is even because ‘(Sa)—(Sa) is
skew-symmetric and we have p,=0, again. Therefore, we only have
to consider the case e=1. We have then, by (II. 1.4),

1.12) pr=(q—1) 3, ¢" "2=(¢—1) 3 N,
72 0dd lfg(%ir

where N, means the cardinality of the set
1.13) E(r,d)={ecK,;rank (a+a)=d}, d: odd.
Along with the set (1.13), we need the set
1.14) S(r,d)={xeA;‘x=x, rank z=d}.
Clearly, the mapping f: E(r,d)—S(r,d) defined by f(a)=‘a+a is a
surjective mapping where each fibre consists of the same number
(=q" ") of matrices, i.e. of all skew-symmetric matrices of degree
r. (Infact, f(a)=f(b)b=a+c¢, ‘c+¢=0.) Therefore, we have
(1.15) [E(r, D]=q"" " 22[S(r, d)].
As is well-known, every symmetric matrix of rank d is congruent
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1
1

to either P= <(1)d 8) or Q= <§ 8), where R = . . , 7 being an

T
element of K* but not in (K*)?. Call G, G, the isotropy group of P, Q,

respectively. Then, we have
(1.16) [S(r, DI=I[GL,(K)]/[G+[GL,(K)]/(Gl.
Since we have

X
Gpo= {(Y ZO) €K, XeO(), YeK, o0 Z€ GL,_d(K)} and

Go= {(’; ZO) eK,; XcOR), YeK, .., Ze GL,_d(K)},

(1.16) becomes
[OADIGL,_,(K)]q"-** ~ [OR)]IGL,-(K)]q"~®*

Consider, now, the polynomial F(X)=(X-1)(X*—1).-..(X*—-1). It
is well-known that

(1.18) [GLy(K)]=q¥ " -D2F (g).
(As for the cardinalities of geometric objects over F,, see [2].) Let
g(r, d) be the cardinality of the set of K-rational points of grassmann
variety of the vector space of dimension » consisting of subspaces of
dimension d. Then, we know that

_  F.(@

19 90 D=5 o, @
Since d is odd, we have

(1.20) [0N]=[0R)]=2q9(¢"—D)g*(¢*—1)- - -q*"*(¢*'—1),
and it follows from (1.17), (1.19), (1.20) that

.21 18, d1=ger, ) LGLEN _ g gyqa-vng_1)g:—1)
[0°(1,)]
.. .(qd_l).

Combining (1.12), (1.15), (1.21), we get
(1.22) pp=(g—Dq" """ > g(r, g " (¢—1(¢*~1)- - -(¢°—D).
1sdsr

d odd
To sum up,

(1.23) Theorem. Let K=F, q:odd, (4,a) be one of algebras
with involution over K given by (1), (ii), (iii), (iv) and F' be the quadratic
mapping A—A given by (1.2). Then, we have py=0 except for the
case (ii) r: odd, e=1, and in this case py is given by the formula (1.22).

§2. Hopf maps. I would like to remark that we can obtain p,
for a certain Hopf map F' as an application of the preceding section.

Consider an algebra (4, «) of type (ii) with A=K,,
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x“z( L4 —-xz) when x=(x‘ x2) and 0=( 0 1).
_xS xl ws 004 "“‘1 0

Since 6= —4@, we have e= —1. The quadratic map
— g2y = (1% T T4 @3+ )
Fa)=ate <—(x§+ w3)  — (2,2, + 25,
gsends A=K,=K* into the subspace K*CA of matrices of trace 0.
Furthermore, if we put Q(x)=det x=u,2,—x,x;,, then we have the
relation Q(F (x)) =Q(x)* which shows that the map F : K*—-K® is a Hopf
map. Since pp is independent of the embedding of the image of F' (see
. 2.2)), (1.23) implies that p,=0 for this Hopf map. Although we
cannot develop here full story of Hopf maps (and non-associative

algebras with involution as well), we hope to come back to it sometime,
somewhere.
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