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We examine the properties of positive linear maps on approx-
imately finite dimensional factors of type II that positive linear maps
are approximately inner in a sense.

Arveson gets a useful property in [1] that a completely positive
linear map p of a separable C*-algebra A satisfying p--O on A (3 C(H)
is pproximately inner in a sense where A is acting on a Hilbert space
H and C(H) is the closed two-sided ideal of all compact operators on H.

In the present paper, we deal the approximately finite dimensional
factor of type II (II or II) and show some properties of positive linear
maps.

Let M be an approximately finite dimensional factor of type II
(resp. type II)acting on a separable Hilbert space H. Let tr be a
fixed, faithful, normal finite (resp. semifinite) trace of M. In the case
of type II, we assume tr(1)--1.

Let F be the ideal generated by all finite projections in M and I
the norm closure of F. Then, every projection in I is a finite projec-
tion. Furthermore, let S-- (x e M; x*x e F}, then S is an ideal in M and
we can define a norm I1" 112 on S by the following way; Ilxll2--tr(x*x)
for x e S. If M is type II1, then F-- S=- I M.

Under the above notations, we can show that any strongly con-
tinuous positive linear map on an approximately finite dimensional
factor of type II is approximately inner with respect to the norm

Theorem 1. Let M be an approximately finite dimensional factor
of type II1. Let p be a strongly continuous positive linear map of M
into M such that p(1)--e is a projection, then there exists a sequence

{} of partial isometries in M with the initial domain e such that
lim p(x) ,*x I. 0

.for every x e M.
Proof. To prove the theorem, we show that, for an arbitrary

positive number and finite set {a, ..., a} of the unit ball of M, there
exists a partial isometry with the initial domain e satisfying the fol-
lowing property;
(.) I]*a-p(a)ll< for i=1, 2, ..., n.
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Since the algebra eMe is an approximately finite dimensional factor of
type II, for the set {p(a), ..., p(a)}, there exist a subfactor B of type
I of eMe and a set (b, ..., b} of elements in B satisfying

p(a)-- b 112<s/3 for i= 1, 2, ..., n.
Let be normal expectation of eMe onto B such that tr (x)=tr ((x))
2or every x e eMe. Then, it is evident that satisfies property
(x)*(x)(x*x) or every x e eMe,

Put p’= p. To show the relation (.), it is sufficient 2or us to
show that there exists a partial isometry, in M with the initial domain
e satisfying;
(**) ,*a--p’(a)[]/3 or i=1, 2, ..., n.
In fact, suppose that there exists a partial isometry , satisfying the
property (**). Then we have the following relation"

Ip’(a)--b=tr ((( p)(a)--(b))*(( p)(a)--(b)))n
tr ((p(a) b)*(p(a)- b))/

gtr (((p(a)- b)*(p(a)- b)))/

tr ((p(a) b)*(p(a)- b))/ p(a)- b /3
or i=1, 2, ..., n. Thus, we have the ollowing;

p(a) *a2p(a) b 12+ b-- p’(a) + p’(a) ,*av
<e/3+/3+/3=

for i=1, 2, ..., n. Hence, the relation (**) implies the relatien (,).
Now, since p’ is strongly continuous, for the above given positive

number , there exists a positive number such that ]lp’(x)-p’(y)</9
for any pair x, y satisfying x-yll<. We can assume that is less
than /9.

Since M is an approximately finite dimensional factor of type II,
for $, there exists a subfactor A of type I of M and a set {a, ..., a}
in the unit ball of A such that [la-a < for every i=1, 2,..., n.
Let, be an arbitrary partial isometry with the initial domain e, then
we have the relation

for i=1, 2, ..., n.
Next, we consider the ollowing property. If there exists a par-

tial isometry, in M with the initial domain e such that

for i=l, 2, ..., n, then

for i= 1, 2, ., n. Thus, it is sufficient for us to show that there exists
a partial isometry v satisfying the relation (***).

Since M is type II, we can assume that both A and B are factors
o2 the same type I. Put m:2t. Let A=p@B(Cy) and B=e,@B(C)
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where C (resp. Cg) is an m-dimensional space with respect to the alge-
bra A (resp. B) and _-1 p=l, =1 e=e, p-pj and e-ej (i, ]=1, 2,
.-, m). Then, p’ is a unital positive linear map of A into B. Let

be the *-isomorphism of B onto B(Cg) defined by (e@c)= c. Further-
more, let {}3= (resp. {}3=) be a orthonormal basis of C (resp. C).
Consider a positive linear functional on A defined by

(a) (( ’)(a) ).
i,j =1

Since M is type II, M C(H)= {0}. Thus, by the Glimm’s theorem [4],
is represented as a limit of vector states. Furthermore, any vector

state of A is represented as a limit of the following vector states 4p"
That is, there exists a orthonormal system {}= in pH and a set {}=
in C2 such that

(a) ((p,c)( )1 ))
i=1 i=1

for every a=p@ceA. Put [ [5= for i=1,2,..., s, then (a)
=.= (cyniCs) for a=p@c e A. For such , there exists an operator
x on C such that (a)= (cxlx). Let y be a unitary operator of
C onto C defined by y= for i= 1, 2, ..., m and w =xy, then

(a) (w*cwI).
i,j=l

Thus, there exists a net {w,} of operators of C to C such that

(wcw[)- (( 0’)(a)l) 0
i,]=1

or every a=p@c e A. Since the space C is finite dimensional,
wcw, (-o p’)(a) ) 0

for every a=p@c e A. Furthermore, since p’(1)=e (e is the identity of
the algebra B), ww, is eventually invertible. For such 2, x,(ww)-is unitary operator and (ww,)-/l in the norm topology. Hence,

(ww,)-/wcw,(ww,)-/--( p’)(a)
From the above arguments, there exists a unitary operator w of C
onto C2 such that

w*cw (o p’)(a’) </9 tr (e)/
ori=l, 2,. n where a=p@c or i=l, 2, ., n.

Let t be a partial isometry such that t*t=e, and tt*=q, gp,. Let
u be a partial isometry with the initial domain p, and the final domaia
p. Put q=uqlu, then (ut)*(ut)=e and (ut)(ut)*=q. Further-
more, let s, be a partial isometry with the initial domain e, and the
final domain e. Put u=uts, thea u is a partial isometry with the
initial domain e and the final domain q. Let w=(w) be the matrix
representation of w with respect to the orthonormal basis {} and
{$}=,. From the above mentioned notations and some properties, put

p WtjUij*
i,j =1
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Then, we can show the following relation by an elementary computa-
tion;

r*ar-- p’(a) w*c,w ( p’)(a) </9 tr (e)/.
Hence, there exists a partial isometry r satisfying the relation (***).
Therefore, we get the complete proof of Theorem 1.

By using the proof of Theorem 1, we ca show a similar result for
a C*-subalgebra oJ M without the assumption of strong continuity.

Proposition 2. Let M be an approximately finite dimensional
factor of type II and p a bounded positive linear map of M into M such
that p(1)-e is a projection. Then, for an arbitrary C*-subalgebra A
of M contained by AF-C*-subalgebra, there exists a sequence {r} of
partial isometries in M with the initial domain e satisfying

for every x e A.
Next, we shall consider the above properties ia the case of type

II. Then, we use the ideal I generated by all finite projections. In
this case, we can get a similar result to Propositio 2 and a generali-
zation of Arveson’s result [1]. To get this result, we use the notation
of MAF-subalgebra o M introduced in [5]. That is, a C*-subalgebra A
of M is called by an MAF-subalgebra o M if there exists a seluence
of finite dimensional C*-subalgebra of M with the identity p satisfy-

ing A {A+1} and furthermore the following properties (1) Every
non zero central projection of eachA is infinite projection, (2) 1-p are
finite projections (k-- 1, 2, ...), (3) A+IA/+I (k--l, 2, ...). In
[5, Theorem 4], we showed the similar result to Proposition 2 for a com-
pletel: positive linear map on an arbitrary MAF-subalgebra. But, in
the present paper, we shall show this property for a positive linear
map. We can get the proof by using a similar way in Theorem 1.

Theorem :. Let M be an approximately finite dimensional factor
of type II and e a finite projection in M. Let p be a positive linear
map of M into eMe such that p(1)=e and p=0 on I. Then, for an arbi-
trary, separable MAF-subalgebra A of M, there exists a sequence {}
of partial isometries with the initial domain e such that

lim I*x p(x) I. 0

for every x e A.
Corollary 4. In Theorem 3, if p(1)=1, then there exists an iso-

merry in M such that p(x)--,*x, e I for every x e A.
If we consider the completely positive linear maps, thea we can

drop down the assumption that p is defined on M. Because, both alge-
bras M and eMe are injective ([2] and [3]).

Added in proof (November 15, 1980). This article was done while
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the author was staying at the University of Copenhagen in Denmark.
After this article was sent or the publication from Copenhagen, the
author and George A. Elliott made a joint work titled by "On the
extensions of C*-algebras relative to factors of type II" in which the
results of [5] in References are included.
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