96. Calculus on Gaussian White Noise. II

By Izumi Kubo and Shigeo Takenaka
Department of Mathematics, Faculty of Science, Nagoya University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1980)

We are going to reformulate the works of Hida [1], [2] to establish a calculus on generalized Brownian functionals which we call Hida calculus.

In Part I [11], we have prepared fundamental tools. By using them, we will discuss on generalized random variables, annihilation operators ∂_{t}, creation operators ∂_{t}^{*}, multiplications $x(t)$. and so forth.
§5. Generalized random variables. As assumed in §4 of Part I [11], let T be a separable metrizable space with a σ-finite Borel measure ν and put $E_{0}=L^{2}(T, \nu)$. Let \mathcal{E} be a dense subset of E_{0} which has a consistent sequence of inner products $\left\{(\xi, \eta)_{p} ; p \geq 0\right\}$ such that (5.1) $\quad(\xi, \xi)_{p} \leq \rho(\xi, \xi)_{p+1}$, for $p \geq 0$ with $\rho, 0<\rho<1$.

Let E_{p} be the completion of \mathcal{E} by the norm $\left\|\|_{p}\right.$ and $E_{-p}=E_{p}^{*}$ with $(\xi, \eta)_{-p}$ be the dual of E_{p}. Suppose that \mathcal{E} is identical to the projective limit E_{∞} of E_{p}. Then the dual \mathcal{E}^{*} is the inductive limit $E_{-\infty}$ of E_{-p}. Throughout this note we assume that the injection $\iota_{0,1}$ from E_{1} to E_{0} is traceable; that is, $\delta_{t}: \xi \mapsto \xi(t)$ belongs to E_{-1} and the mapping $t \in T$ $\rightarrow \delta_{t} \in E_{-1}$ is continuous, and assume that $\|\delta\|^{2} \equiv \int_{T}\left\|\delta_{t}\right\|_{-1}^{2} d \nu(t)<\infty$. Then by Lemma 4.2, the injection $\iota_{0,1}$ is a Hilbert-Schmidt operator. Therefore, by Gelfand-Minlos-Sazanov's theorem, we have

Theorem 5.1. There exists a probability measure μ on \mathcal{E}^{*} such that

$$
\int_{\mathcal{E}^{*}} e^{i\langle x, \xi\rangle} d \mu(x)=\exp \left[-\frac{1}{2}\|\xi\|_{0}^{2}\right], \quad \text { for } \xi \in \mathcal{E}
$$

Definition 5.2. The measure μ on \mathcal{E}^{*} is called a measure of Gaussian white noise. The L^{2}-space $L^{2}\left(\mathcal{E}^{*}, \mu\right)$ is denoted by $\left(L^{2}\right)$, simply.

It is well known that the measure μ is quasi-invariant under the shift $x \rightarrow x-\xi$ for $\xi \in \mathcal{E}$ and that

$$
\begin{equation*}
\frac{d \mu(x-\xi)}{d \mu(x)}=\exp \left[\langle x, \xi\rangle-\frac{1}{2}\|\xi\|_{0}^{2}\right] \in L^{q}\left(\mathcal{E}^{*}, \mu\right) \tag{5.2}
\end{equation*}
$$

for $q \geq 1$ [7]. With the result, we can define a transformation \mathcal{S} by

$$
\begin{equation*}
(\mathcal{S} \varphi)(\xi)=\int_{\mathcal{E}^{*}} \varphi(x+\xi) d \mu(x), \quad \xi \in \mathcal{E}, \quad \varphi \in L^{q}\left(\mathcal{E}^{*}, \mu\right), \quad 1<q<\infty \tag{5.3}
\end{equation*}
$$

Remark 5.3. By (5.2) and (5.3), (S $)(\lambda \xi)$ can be extended to an entire function of λ as follows;

$$
\begin{equation*}
(S \varphi)(\lambda \xi)=\int_{\mathcal{E}^{*}} \varphi(x) \exp \left[\lambda\langle x, \xi\rangle-\frac{\lambda^{2}}{2}\|\xi\|_{0}^{2}\right] d \mu, \quad \xi \in \mathcal{E} . \tag{5.4}
\end{equation*}
$$

Hence, the analytic continuation $(S \varphi)(i \xi)$ satisfies

$$
\begin{equation*}
(\mathcal{S} \varphi)(i \xi)=(\mathscr{I} \varphi)(\xi) \exp \left[\frac{1}{2}\|\xi\|_{0}^{2}\right] \tag{5.5}
\end{equation*}
$$

where \mathscr{I} is the transformation introduced by Hida-Ikeda [5];

$$
\begin{equation*}
(\mathscr{I} \varphi)(\xi)=\int_{\mathcal{E}^{*}} e^{i\langle x, \xi\rangle} \varphi(x) d \mu(x) . \tag{5.6}
\end{equation*}
$$

Let $\mathscr{F}^{(p)}$ be the Hilbert space of functionals of $\xi \in \mathcal{E}$ spanned by $\left\{e^{\langle n, \xi\rangle}\right.$; $\eta \in \mathcal{E}\}$ (see § 3 of Part I) with inner product

$$
\begin{equation*}
\left(e^{\langle\eta, \xi\rangle}, e^{\langle\zeta, \xi\rangle}\right)^{(p)}=\exp \left[(\eta, \zeta)_{p}\right] . \tag{5.7}
\end{equation*}
$$

Theorem 5.4. The space $\left(L^{2}\right)$ is isomorphic to $\mathscr{F}^{(0)}$ by \mathcal{S}.
By (3.2) of Part I, $\mathscr{F}^{(p+1)} \subset \mathcal{F}^{(p)} \subset \mathcal{F}^{(0)}$ for $p \geq 1$. Put $\mathcal{H}^{(p)}=\mathcal{S}^{-1}\left(\mathcal{F}^{(p)}\right)$ for $p \geq 0$, and induce inner product $(,)_{\mathscr{A}^{(p)}}$ on $\mathscr{H}^{(p)}$ from the inner product of $\mathscr{F}^{(p)}$. Let $\mathscr{F}^{(-p)}$ be the dual of $\mathscr{F}^{(p)}, p>0$. Then we have inclusions.

$$
\begin{align*}
\mathscr{H} & =\mathscr{H}^{(\infty)} \subset \cdots \subset \mathcal{H}^{(p)} \subset \cdots \subset \mathcal{A}^{(0)} \tag{5.8}\\
& =\left(L^{2}\right) \subset \cdots \subset \mathcal{A}^{(-p)} \subset \cdots \subset \mathcal{G}^{(-\infty)}=\mathscr{G}^{*} .
\end{align*}
$$

Definition 5.5. We say that an element of \mathscr{G}^{*} is a generalized random variable and that \mathscr{H} is the space of testing random variables.

Lemma 5.6. (i) $\left\{\varphi_{n}\right\}$ in $\mathcal{I}^{(p)}$ converges to φ weakly, if and only if it is bounded in $\mathscr{S}^{(p)}$ and $\left(\mathcal{S} \varphi_{n}\right)(\xi)$ converges to $(S \varphi)(\xi)$ for each $\xi \in \mathcal{E}$.
(ii) If $\left\{\varphi_{n}\right\}$ is bounded in $\mathcal{G}^{(p)}, p \geq 1$ (or $p=0$), and if $\left(\mathcal{S} \varphi_{n}\right)(\xi)$ converges for each $\xi \in \mathcal{E}$, then it converges strongly in $\left(L^{2}\right)=\mathcal{H}^{(0)}$ (or in $\mathscr{H}^{(-1)}$, respectively).

Lemma 5.7. Suppose that \mathcal{E} is a nuclear space. Then
(i) $\left\{\varphi_{n}\right\}$ in \mathcal{H} converges strongly in \mathcal{H}, if and only if it is bounded in \mathcal{H} and $\left(\mathcal{S} \varphi_{n}\right)(\xi)$ converges for each $\xi \in \mathcal{E}$,
(ii) the same assertion holds in \mathscr{H}^{*}.

The Hermite polynomials with parameter α are defined by the generating function

$$
\begin{equation*}
\exp \left[t u-\frac{\alpha}{2} t^{2}\right]=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(u ; \alpha) \tag{5.9}
\end{equation*}
$$

Remark 5.8. Our Hermite polynomial $H_{n}(u ; \alpha)$ is equal to Kakutani's one up to $n!$ [8], in particular

$$
\begin{aligned}
& H_{n}(u ; 0)=u^{n}, \quad H_{0}(u ; \alpha)=1, \\
& H_{2 n}(0 ; \alpha)=\frac{(2 n)!}{n!2^{n}}(-\alpha)^{n} \quad \text { and } \quad H_{2 n+1}(0 ; \alpha)=0 .
\end{aligned}
$$

Lemma 5.9. We have the following formulae

$$
\begin{aligned}
& \mathcal{S}\left(H_{n}(\langle\cdot, \eta\rangle ; \alpha) e^{\langle\cdot, \xi\rangle}\right)(\xi)=H_{n}\left((\zeta+\xi, \eta)_{0} ; \alpha-\|\eta\|_{0}^{2}\right) e^{(\xi, \xi)+\| \|\| \|_{0}^{2} / 2}, \\
& \mathcal{S}\left(H_{n}\left(\langle\cdot, \eta\rangle ;\|\eta\|_{0}^{2}\right)\right)(\xi)=(\xi, \eta)_{0}^{n} .
\end{aligned}
$$

§6. Derivatives and their duals. Let φ be in \mathscr{H}, then $(S \varphi)(\xi)$ is in \mathscr{F} by definition. By Theorem 4.4 of Part I, the functional deriva-
tive $\delta / \delta \xi(t)$ is a continuous operator on \mathcal{F}. Therefore we can define a continuous operator $\partial / \partial x(t)$ on \mathcal{H} by

$$
\begin{equation*}
\frac{\partial}{\partial x(t)} \varphi=\mathcal{S}^{-1} \frac{\delta}{\delta \xi(t)}(\mathcal{S} \varphi)(\xi) . \tag{6.1}
\end{equation*}
$$

Theorem 6.1. (i) The operator $\partial / \partial x(t)$ is continuous on \mathcal{H} and strongly continuous in t and satisfies

$$
\begin{aligned}
& \left(\mathcal{S} \frac{\partial}{\partial x(t)} \varphi\right)(\xi)=(\mathcal{S} \varphi)^{(1)}(\xi ; t) \quad \text { for } \varphi \in \mathcal{H} \\
& \left\|\frac{\partial}{\partial x(t)} \varphi\right\|_{\mathcal{A}^{(p)}} \leq\left\|\delta_{t}\right\|_{-1}\|\varphi\|_{\mathcal{H}^{(p+1)}} \rho^{p}\left(1-\rho^{2}\right)^{-1}
\end{aligned}
$$

(ii) The dual operator $(\partial / \partial x(t))^{*}$ is continuous on \mathscr{H}^{*} and strongly continuous in t and

$$
\begin{aligned}
& \left(\mathcal{S}\left(\frac{\partial}{\partial x(t)}\right)^{*} \Psi\right)(\xi)=\xi(t)(\mathcal{S} \Psi)(\xi) \quad \text { for } \Psi \in \mathcal{S}^{*} \quad \text { and } \quad \xi \in \mathcal{E} \\
& \left\|\left(\frac{\partial}{\partial x(t)}\right)^{*} \Psi\right\|_{\mathcal{H}^{(-p)}} \leq\left\|\delta_{t}\right\|_{-1}\|\Psi\|_{\mathscr{G}^{(-p+1)}} \rho^{p-1}\left(1-\rho^{2}\right)^{-1}
\end{aligned}
$$

For simplicity, denote

$$
\begin{equation*}
\partial_{t}=\frac{\partial}{\partial x(t)} \quad \text { and } \quad \partial_{t}^{*}=\left(\frac{\partial}{\partial x(t)}\right)^{*} \tag{6.2}
\end{equation*}
$$

By Theorem 6.1, we can define operators $A(f)$ on \mathscr{H} and $A^{*}(f)$ on \mathscr{I}^{*} by

$$
\begin{aligned}
& A(f) \equiv \int_{T^{m}} d \nu\left(t_{1}\right) \cdots d \nu\left(t_{m}\right) f\left(t_{1}, \cdots, t_{m}\right) \partial_{t_{1}} \cdots \partial_{t_{m}} \\
& A^{*}(f) \equiv \int_{T^{m}} d \nu\left(t_{1}\right) \cdots d \nu\left(t_{m}\right) f\left(t_{1}, \cdots, t_{m}\right) \partial_{t_{1}}^{*} \cdots \partial_{t_{m}}^{*}
\end{aligned}
$$

for f in $E_{0}^{\hat{\otimes} m}=\hat{L}^{2}\left(T^{m}, d \nu^{m}\right)$.
Theorem 6.2. For $\varphi \in \mathscr{A}, \Psi \in \mathcal{I}^{*}$ and $f \in \mathcal{E}^{\otimes \otimes m}$, we have
(i) $\quad(\mathcal{S}(A(f) \varphi))(\xi)=\left\langle(\mathcal{S} \varphi)^{(m)}(\xi ; \cdot), f\right\rangle$, $\|A(f) \varphi\|_{\mathcal{H}^{(p)}} \leq\|f\|_{E_{-p} \hat{\theta}^{(p}}\|\varphi\|_{\mathcal{H}^{(p+1)}}\left(1-\rho^{2}\right)^{-(m+1) / 2} \rho^{m} \sqrt{m!}$.
(ii) $\quad\left(\mathcal{S}\left(A^{*}(f) \varphi\right)\right)(\xi)=\left\langle f, \xi^{\otimes \hat{\otimes} m}\right\rangle(S \varphi)(\xi)$,

$$
\left\|A^{*}(f) \varphi\right\|_{\mathcal{G}^{(p)}} \leq\|f\|_{E_{p}^{\otimes} m}\|\varphi\|_{\mathcal{G}^{(p+1)}}\left(1-\rho^{2}\right)^{-(m+1) / 2} \sqrt{m!} .
$$

(iii) $\langle\Psi, A(f) \varphi\rangle=\left\langle A^{*}(f) \Psi, \varphi\right\rangle$ and $\langle A(f) \Psi, \varphi\rangle=\left\langle\Psi, A^{*}(f) \varphi\right\rangle$.
(iv) $A(f) A(g)=A(f \hat{\otimes} g)$ and $A^{*}(f) A^{*}(g)=A^{*}(f \hat{\otimes} g)$,

$$
A(f) A^{*}(g)-A^{*}(g) A(f)=(f, g)_{0}, \quad \text { if } f, g \in \mathcal{E}
$$

Remark 6.3. By this theorem, $A(f)$, for $f \in E^{\hat{\otimes} m}$, can be regarded as continuous operators on both spaces \mathscr{H} and \mathscr{H}^{*}. Further, $A(F)$, for $F \in E^{* \otimes \otimes m}$, can be defined as a continuous operator on \mathscr{G} while $A^{*}(F)$ is defined as a continuous operator on \mathscr{I}^{*}. In particular for F in $E_{0}^{\hat{\otimes} m}=L^{2}\left(T^{m}, \nu^{m}\right), A^{*}(F) 1$ is in $\left(L^{2}\right)$.

By the theorem together with Theorems 3.1 and 4.4, we have
Lemma 6.4. Let f be in $E^{\otimes ิ m}$ and put $\varphi=A^{*}(f) 1$. Then

$$
(S \varphi)(\xi)=\left\langle f, \xi^{\hat{\otimes}^{m}}\right\rangle \quad \text { and } \quad\|\varphi\|_{\mathscr{G}^{(p)}}^{2}=\left\|\left\langle f, \xi^{\hat{\otimes} m}\right\rangle\right\|_{\mathscr{F}^{(p)}}^{2}=m!\|f\|_{E_{p}^{\otimes} m}^{2}
$$

hold. Furthermore for $m>k$,

$$
\partial_{t_{1}} \cdots \partial_{t_{k}} \varphi=\frac{m!}{(m-k)!} A^{*}\left(\delta_{t_{1}}^{*} \cdots \delta_{t_{k}}^{*} f\right) 1
$$

Theorem 6.5. Let φ be in \mathscr{G}, then

$$
\varphi=\sum_{k=0}^{\infty} \frac{1}{k!} A^{*}\left((S \varphi)^{(k)}(0 ; \cdot)\right) 1
$$

and

$$
\|\varphi\|_{\left(L^{2}\right)}^{2}=\sum_{k=0}^{\infty} \frac{1}{k!} \int_{T^{k}}\left|(S \varphi)^{(k)}\left(0 ; t_{1}, \cdots, t_{k}\right)\right|^{2} d \nu\left(t_{1}\right) \cdots d \nu\left(t_{k}\right) .
$$

Remark 6.6. As in Remark 4.5, $\partial_{t_{1}} \cdots \partial_{t_{k}}$ can be regarded as an operator-valued -from $\mathcal{A}^{(-p)}$ to $\mathcal{H}^{(-p-1)}$ - generalized function.
§ 7. Multiplication and normal ordering. By Theorem 6.3, the operators ∂_{t} and ∂_{t}^{*} can be regarded as operator-valued generalized functions on \mathcal{E}. The commutation relations (iv) in Theorem 6.2 can be written in the following more symbolical forms;

$$
\begin{align*}
& \partial_{t} \partial_{s}^{*}-\partial_{s}^{*} \partial_{t}=\delta_{s}(t), \tag{7.1}\\
& \partial_{t} \partial_{s}-\partial_{s} \partial_{t}=\partial_{t}^{*} \partial_{s}^{*}-\partial_{s}^{*} \partial_{t}^{*}=0 .
\end{align*}
$$

The relations are so-called the canonical commutation relations. According to the terminology in quantum field theory, ∂_{t}^{*} is called a creation operator and ∂_{t} is an annihilation operator at t.

Remark 7.1. Since $\varphi(x)$ and $\psi(x)$ in \mathcal{H} are random variables in $\left(L^{2}\right)$, the product $(\varphi \psi)(x)=\varphi(x) \psi(x)$ is a random variable, at least belonging to $L^{1}\left(\mathcal{E}^{*}, \mu\right)$. Later we will see that $\varphi \psi$ is in \mathcal{H}.

Theorem 7.2. Define $x(t) \cdot \equiv \partial_{t}+\partial_{t}^{*}$, then for $\varphi \in \mathcal{H}, \eta \in \mathcal{E}$,

$$
\begin{aligned}
& \langle x, \eta\rangle \varphi=\int_{T} d \nu(t) \eta(t) x(t) \cdot \varphi=\left(A(\eta)+A^{*}(\eta)\right) \varphi, \\
& x(t) \cdot \varphi=A^{*}\left(n \delta_{t}^{*} f_{n}\right) 1+A^{*}\left(\delta_{t} \hat{\otimes} f_{n}\right) 1, \quad \text { for } \varphi=A^{*}\left(f_{n}\right) 1
\end{aligned}
$$

Let us use the notation of the normal ordering : P : for polynomials P of ∂_{t} and ∂_{t}^{*} 's (see [9], [10]). Then the following lemma is useful.

Lemma 7.3.
(i) $: x\left(t_{1}\right) \cdots x\left(t_{n}\right) \cdot:=\sum_{\Lambda \subset\{1, \cdots, n\}} \prod_{j \in A} \partial_{t j}^{*} \prod_{i \in\{1, \cdots, n\} \backslash} \partial_{t_{i}}$,
$: x\left(t_{1}\right) \cdots x\left(t_{n}\right) \cdot: 1=\partial_{t_{1}}^{*} \cdots \partial_{t_{n}}^{*} 1$,
(ii) $x\left(t_{1}\right) \cdots x\left(t_{n}\right) \cdot 1=\sum_{k=0}^{[n / 2]} \sum_{\Lambda_{1}+\cdots+\Lambda_{k}+\Lambda_{0}=\{1, \cdots, n\}} \delta_{\Lambda_{1}} \cdots \delta_{\Lambda_{k}} \prod_{j \in \Lambda_{0}} \partial_{t_{j}}^{*}$, where $\delta_{\Delta}=\delta_{t_{k}}\left(t_{m}\right)$ if $\Delta=\{k, m\}$.

Define a mapping from $\mathcal{E}^{\hat{\otimes} n} \times \mathcal{E}^{\hat{\otimes} m}$ into $\mathcal{E}^{\hat{\otimes}(n+m-2 k)}$ for $0 \leq k \leq n \wedge m$ $\equiv \min \{n, m\}$ by

$$
f \otimes_{(k)} g\left(u_{1}, \cdots, u_{n+m-2 k}\right)
$$

$$
\begin{align*}
=\frac{1}{(n+m-2 k)!} & \sum_{\sigma \in \mathbb{\Xi}_{n+m-2 k}} \int_{T_{k}} f\left(u_{\sigma(1)}, \cdots, u_{\sigma(n-k)}, v_{1}, \cdots, v_{k}\right) \tag{7.3}\\
& \times g\left(u_{\sigma(n-k+1)}, \cdots, u_{\sigma(n+m-2 k)}, v_{1}, \cdots, v_{k}\right) d \nu^{k}(v),
\end{align*}
$$

here $\Im_{n+m-2 k}$ is the symmetric group of order $(n+m-2 k)$.

Theorem 7.4. Let f be in $\mathcal{E}^{\otimes m}$ and g be in $\mathcal{E}^{\otimes \hat{} 1}$, then
(i) $\left\|f \otimes_{(k)} g\right\|_{E_{p}^{\hat{\otimes}}(n+m-2 k)} \leq\|f\|_{E_{p}^{\otimes} m}\|g\|_{E_{p}^{\otimes} n} \rho^{2 k p}$,
(ii) put $\varphi(x)=A^{*}(f) \cdot 1$ and $\psi(x)=A^{*}(g) \cdot 1$, then

$$
\begin{aligned}
\varphi(x) \psi(x) & =\sum_{k=0}^{n \wedge m} \frac{n!m!}{k!(n-k)!(m-k)!} A^{*}\left(f \otimes_{(k)} g\right) \cdot 1 \\
& =\int_{T^{m}} d \nu\left(t_{1}\right) \cdots d \nu\left(t_{n}\right) g\left(t_{1}, \cdots, t_{n}\right): x\left(t_{1}\right) \cdots x\left(t_{n}\right) \cdot: \varphi
\end{aligned}
$$

(iii) $\quad(\mathcal{S}(\varphi \psi))(\xi)=\sum_{k=0}^{n \wedge m} \frac{n!m!}{k!(n-k)!(m-k)!}\left\langle f \bigotimes_{(k)} g, \xi^{\hat{\otimes}(n+m-2 k)}\right\rangle$

$$
=\sum_{k=0}^{n \wedge m} \frac{1}{k!} \int_{T^{k}}(S \varphi)^{(k)}\left(\xi ; t_{1}, \cdots, t_{k}\right)
$$

$$
\times(\mathcal{S} \varphi)^{(k)}\left(\xi ; t_{1}, \cdots, t_{k}\right) d \nu^{k}(t)
$$

(iv) $\|\varphi \psi\|_{\mathscr{A}^{(p)}} \leq 2^{n+m} \sum_{k=0}^{n \wedge m}\left(\frac{\|\delta\|^{2} \rho^{2 p-2}}{2}\right)^{k}\|\varphi\|_{\mathscr{H}^{(p)}}\|\psi\|_{\mathcal{A}^{(p)}}$.

Theorem 7.5. Let φ and ψ be in \mathcal{H}, then $\varphi \psi$ belongs to \mathscr{H} and
(i) $\|\varphi \psi\|_{\mathscr{H}^{(p)}} \leq 5\|\varphi\|_{\mathcal{H}^{(p+q)}}\|\psi\|_{\mathcal{H}^{(p+q)}}$
holds for sufficiently large q such that $\left(4+\|\delta\|^{2}\right) \rho^{q}<1$,
(ii) $(S(\varphi \psi))(\xi)=\sum_{k=0}^{\infty} \frac{1}{k!}\left((S \varphi)^{(k)}(\xi ; \cdot),(S \psi)^{(k)}(\xi ; \cdot)\right)_{E_{0}^{\hat{\otimes}} k}$.

Theorem 7.6. The multiplication operator $\varphi \cdot: \psi \rightarrow \varphi \psi$ is continuous and symmetric on \mathcal{H}. For φ and $\psi \in \mathscr{H}$, we have

$$
\begin{gathered}
\partial_{t}(\varphi \psi)=\varphi \partial_{t} \psi+\psi \partial_{t} \varphi, \\
\partial_{t}^{*}(\varphi \psi)=\varphi \cdot \partial_{t}^{*}-\left(\partial_{t} \varphi\right) \cdot \psi .
\end{gathered}
$$

Let $U(\xi)$ be in \mathscr{F}, then U can be extended to a continuous \mathcal{F}-functional $U(x)$ on \mathcal{E}^{*}. By Theorem 3.1, there exists a $\Xi=\left(f_{0}, \cdots, f_{n}, \cdots\right)$ $\in e^{\hat{\otimes} \mathcal{E}}$ such that

$$
\begin{equation*}
U(x)=\sum_{n=0}^{\infty}\left\langle x^{\hat{\otimes} n}, f_{n}\right\rangle \tag{7.4}
\end{equation*}
$$

The multiplication by $U(x)$ coincides with the operator

$$
\begin{equation*}
U(x) \cdot=\sum_{n=0}^{\infty}\left\langle x^{\hat{\otimes} n}, f_{n}\right\rangle \cdot, \tag{7.5}
\end{equation*}
$$

and its normal ordering is given by

$$
\begin{equation*}
: U(x) \cdot:=\sum_{n=0}^{\infty}:\left\langle x^{\hat{\otimes} n}, f_{n}\right\rangle \cdot:=\sum_{n=0}^{\infty} A^{*}\left(f_{n}\right) . \tag{7.6}
\end{equation*}
$$

Therefore, we have
Theorem 7.7. If $U(\xi)$ is in \mathcal{F}, then U can be extended to a continuous functional $U(x)$ on \mathcal{E}^{*}. Furthermore $U(x)$ is in \mathcal{H} and satisfies $\mathcal{S}(: U(x) \cdot: 1)(\xi)=U(\xi)$.

References

[1] Hida, T.: Analysis of Brownian functionals. Carleton Math. Lect. Notes, no. 13, second ed. (1978).
[2] -: Brownian motion. Applications of Math., vol. 11, Springer Verlag (1980).
[5] Hida, T., and Ikeda, N.: Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. Proc. Fifth Berkeley Symp. on Math. Statist. and Probability, vol. 2, part 1, pp. 117-143 (1967).
[7] Kuo, Hui-Hsiung: Gaussian Measures in Banach Spaces. Lect. Notes in Math., vol. 463, Springer Verlag (1975).
[8] Kakutani, S.: Determination of the spectrum of the flow of Brownian motion. Proc. Nat. Acad. Sci. USA, 36, 319-323 (1950).
[9] Wick, G. C.: The evaluation of the collision matrix. Phys. Rev., 80, 268272 (1950).
[10] Hepp, K.: Théorie de la renormarisation. Lect. Notes in Phys., vol. 2, Springer Verlag (1969).
[11] Kubo, I., and Takenaka, S.: Calculus on Gaussian white noise I. Proc. Japan Acad., 56A, 376-380 (1980).

