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109. Riemann.Lebesgue Lemma for Real Reductive Groups

By Masaaki EGUCHI*) and Keisaku KUAHA**)

(Communicated by K.Ssaku YOSIDA, M. . )., Dec. 12, 1980)

1. Introduction. Let G be a Lie group o class .(, which is
reductive group defined in 2. Let P=MAN be a cuspidl parabolic
subgroup of G and its Langlands decomposition. For any representa-
tion a of discrete series of M and (not necessarily unitary) character
2 of A we can associate a continuous representation z(e) of G Thea,J

Fourier-Laplace transform of. f e C(G) is defined by

re(a, 2)----f f(x)z,)(x) dx.
JG

Let V be the representation space of a. Let K be a maximal compact
subgroup of G. Then f(a, 2) is an integral operator on a subspace

o. L(K V) with the kernel function f,(a, , k, k), k, k e K. If
is unitary, f,(a, ,) is defined for L(G) and it vanishes when (a,

in the sense of hull-kernel topology (see [2, p. 317]). The purpose of
the present paper is to show that there exists a tube domain , con-
taining the unitary dual A* o A, o. the complexification of A* such
that for almost all (k, k) e K K f(a, , k,, kO is defined for f e L(G)
and it vanishes when +i] e and (a, 2)-.

2. Notation and preliminaries. If V is a real vector space, V
denotes its complexification. Let G be a Lie group with Lie algebra
g. Let G be the connected component of the unit of G. We denote
by G the analytic subgroup of G whose Lie algebra is g [, g]. Let
G be the connected complex adjoint group of g. A Lie group G with
Lie algebra g is called of class J( if G satisfies the ollowing condi-
tions" (1) g is reductive and Ad(G)cG (2) the center oi G is finite;
(3) [G" G]c. In the sequel, we assume that G is a Lie group of
class ’. I L is a Lie group, we denote by =LA(L) the Lie algebra
of L.

Let K be a maximal compact subgroup of G. Let --f,
-LA(K), be the Cartan decomposition o and the corresponding
Crtn involution. Let ao be a maximal abelian subspace ot and a0*
its dul space. We denote by z/ the set o all roots o (, a0). For
e /, let be the corresponding root space. We fix an order in a0*

and denote by + the set o all positive roots. We set
Let M0 be the centralizer of a0 in K. We put A0=exp a0, N0=exp no
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and Po=MoAoNo. Then P0 is a minimal parabolic subgroup o G. Let
log" A0-+a0 be the inverse mapping of exponential mapping of 0 to A0.

Let P=MAN be a parabolic subgroup of G and its Langlands
decomposition, where A is the. split component and N is the radical of
P. Let us assume that PP0. Then ACAo. Let a=LA(A) and

=LA(N). We put p(H)=(1/2)tr(ad H), for H e a and we put p0 Po.
Let dk be the Haar measure on K normalized so that the total measure
is one. Let dx be the standard Haar measure on G, which is the
measure normalized so that dx e(o)dkdaodno for x kaono (K e K,
a0 e A0, no e No). Let dm be the standard Haar measure on M. We
put P=Po(M, K=K(M, A=AoQM and N=NoQM. Then P
is a minimal parabolic subgroup of M and M=KA,N is an Iwasawa
decomposition of M. We put a=LA(A) and n=LA(N). Let
p(*H)=(1/2)tr (ad*H), *H e a. Then if m-*k*a*n e KAN,
then dm=e:p(g*)d*kd*ad*n. Then we have the following (see e.g.
[6, p. 293]).

Lemma 1. Each element of M commutes with every element of
A. As the direct products, we have Ao=AA and No=NN. If ao
=*aa (*a e A, a e A) and no=*nn (*n e N,, n e N), then dao=d*ada
and dno=d*ndn. Moreover, if H0=*H+H (*He , He ), then
po(Ho) p(*H)+p,(H).

Let us assume that P is cuspidal. Then the discrete series /r
M is not empty. Furthermore, we assume that M: G. Then aev (0}.
Let (a, V.) be an irreducible unitary representation of M, whose class
is in/ra. For 2 e a* we define a representation a o P on V. by a(man)
----a(m)e-(), (me M, a e A, n e N). We put 6(man)-e().
Let =(e) be the representation of G induced from the representation
3a of P on V. Let g), be the Hilbert space consisting of all V,-
valued measurable functions on K such that" (1) (km)=a(m)-(k)
for all m e K, and k e K; (2) 1=[ ](k)]dk<oo. Let x=(x)m(x)

dK

.>< exp(H(x))n(x), where (x) e K, re(x) e M, H(x) e and n(x) e N.
Then

(z,)(x))(k) a(m(x-k))- e(’- (’(-)((x-
(k e K, e g)). Though the components x(x) and re(x) o x are not
uniquely determined, this representation is well-defined. We know
that (e) is unitary for 2 e a* and that if 2 e * and is regular, then
is irreducible (see [4]).

3. Riemann.Lebesgue lemma. We define the Fourier transform
of f e L(G) by

f.(, ,)= f(). ()d, ( e M, e *).

If f e C(G), then f(e, 2) may make sense on r.. Leg e .
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Then

(re(a, ))(k)=;fe(a, ; k, k)(k)dk,
where

](a, ; k, k0=f f(kmank.-ge(-)()a(m)dmdadn.
JMXAXN

We define the direct sum (/ of e a* and/ e a* as follows" If
Ho--*H+H (Ho e o, *H e , H e ), then (,z)(Ho)=/(*H)+,t(H).
Then/ e . By Lemma 1 we have that po-p,ps. Let M be the
normalizer of ao in K. We put W--M’o/Mo, the Weyl group of G/K.
We denote by [W] the order of W. The group W acts on ao and on a
by sH=Ad(k)H and (s,)(H)=,(s-H) (s=kM0 e W, H e a0 and e a).
Let a2=(H e ao[a(H)0 for all a e A+}, the positive Weyl chamber.

’--(H e ao[a(H)4:0 for all a e A+}. Then for any connectedWe put ao
component C of a0, we can take s e W uniquely so that C--sa2. We
put A=expa and Ag=expa0. Let Co be the convex closure of
{SpolS e W} in a0*. We put

ff-{ e a* Im(p) e Co},
where Im denotes the imaginary part.

Lemma 2. Let f be a K-biinvariant and non-negative integrable
function on G. If belongs to C,o, then we have

I f(aono)e(+o)(o)daodno_[W]
AoNo

where f l i8 the L’ norm of f.
Proof. We write a]=expsH for a0=expH. We put

F(ao) e()f f(aono) dno.
dNo

Since f is K-biinvariant, we have F(a])=F(ao) for all s e W ([3, p.
261]). The measure of Ao\Ag is zero and Ag=[_Je(A2)-’ (disjoint
union). Hence we have

I f(aono)e(+,o)(’o)daodno=.,f e(lgo)F](ao)dao
AoNo (Ao+)

_,ew[ e(*)Fz(ao)dao--[W]l fll,. Q.E.D.
dAo

Let f e L(G). We put f(x)=l-lf(kxk’)ldkdk.o Then f is K-bi-

invariant and non-negative. Let us assume that =+ir] e . Then,

I if(kmank_gle(+o)o)dkdmdadndk
KXMXAXNXK

;f(man) e(+)()dmdadn

f(*k*a*nan)e’(*//’(d*kd ad ndadn
KMXAMXNMAXN

f f(aono)e((’)+)()daodno (Lemma 1)
JAoNo
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Therefore, by Fubini’s theorem, the functions

(m, a)= f(kmank)dn e
JN

on M A are integrable for almost all (k, k) e K K. Hence if
=+i] e, then ](a, ]; k, k0 or f L(G) may be defined for al-
most all (k, kO e KK. And f(a, . k, k) is the Fourier transform
of the integrable function on the direct product group M A:

]e(a, ; k, k)= (m, a)e-()a(m)dmda.
JMA

Hence by [2, p. 317], if (a, )-.c in the sense o the hull-kernel topol-
ogy, then f(a, ; k, k)-.0. On the other hand, Lipsman’s theorem
([5] and [7, p. 408]) says that the discrete series is discrete in hull-kernel
topology. The space is parametrized by a lattice in certain eucli-
dean space and the unitary dual of a compact subgroup of M ([1]).
Therefore, we have the same consequence as the above if (a, )--c in
the topology of the parameter space. Thus we have the ollowing

Theorem. Let f e L(G). If (a, ) e /X, Im constant and
(a, 2)-+c, then re(a, 2; k, k)--O for almost all (k, k.) e K X K.
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