108. The Lax-Milgram Theorem for Banach Spaces. I

By S. RAMASWAMY

School of Mathematics, Tata Institute of Fundamental Research

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1980)

§ 0. When V is a Hilbert space over R and 'a' is a symmetric, continuous, coercive bilinear form, the Lax-Milgram theorem is an immediate consequence of the Riesz representation theorem for Hilbert spaces. However, the case when 'a' is no longer symmetric is different. In this paper, we present a method in §1, which treats the non-symmetric case also almost on the same lines as the symmetric case. The method gives actually the Lax-Milgram theorem for any Banach space. The idea behind the method also generalizes to Banach spaces, the theorem of Lions-Stampacchia [1] on variational inequalities, proved by them for Hilbert spaces.

§ 1. Let V be a vector space over R. Let 'a' be a bilinear form on V such that $a(x,x) > 0 \forall x \neq 0$. Let 'b' be the bilinear form defined as

$$b(x, y) = \frac{a(x, y) + a(y, x)}{2} \forall x, y \in V.$$

Then, 'b' is symmetric and $b(x, x) = a(x, x) \forall x \in V$. Hence, 'b' defines an inner-product on V and endowed with this inner-product, V becomes a pre-Hilbert space which we denote by V_b . We shall denote by ||x||, the norm of an element $x \in V_b$. i.e. $||x|| = +\sqrt{a(x, x)}$. Let V'_b denote the dual of V_b .

Let us assume that 'a' is continuous on $V_b \times V_b$. i.e. let us assume that $\exists M < +\infty$ such that

 $|a(x, y)| \leq M \sqrt{a(x, x)} \sqrt{a(y, y)} \quad \forall x, y \in V.$

Then, under this assumption, we have obvious linear maps A and B from V_b to V'_b taking an element $x \in V_b$ to $Ax \in V'_b$ (resp. $Bx \in V'_b$) defined as Ax(y) = a(y, x) (resp. Bx(y) = a(x, y)).

$$||Ax|| = \sup_{y \neq 0} \frac{|Ax(y)|}{||y||} = \sup_{y \neq 0} \frac{|a(y, x)|}{||y||} \leq M ||x||.$$

Moreover, if $x \neq 0$,

$$\|Ax\| \ge \frac{a(x,x)}{\|x\|} = \|x\|.$$

Hence, if $x \neq 0$,

$$\|x\| \leqslant \|Ax\| \leqslant M \|x\|.$$

But these inequalities are trivially valid when x=0. Hence, we have $\forall x \in V$,

No. 10]

$$\|x\| \leqslant \|Ax\| \leqslant M \|x\|. \tag{I}$$

We have, similarly $||x|| \leq ||Bx|| \leq M ||x|| \forall x \in V$.

Definition 1. Let 'a' be continuous on $V_b \times V_b$. V_b is said to have the *right* (resp. *left*) Riesz representation property with respect to 'a' if $\forall f \in V'_b$, $\exists x \in V$ such that f(y) = a(y, x) (resp. $f(y) = a(x, y)) \forall y \in V$.

In terms of the maps A, B, V_b has the right (resp. left) Riesz representation property iff A (resp. B) is onto. From the inequalities (I), A and B are one-one. Hence, there is always uniqueness of the element x, that corresponds to $f \in V'_b$ in the above definition.

Theorem 1. Let 'a' be continuous on $V_b \times V_b$. Then, V_b has the right (resp. left) Riesz representation property with respect to 'a' iff V_b is complete i.e. iff V_b is a Hilbert space.

Proof. We shall prove the theorem for the right Riesz representation property. The proof for the left Riesz representation property is similar.

(i) Necessity. Let us assume that V_b has the right Riesz representation property with respect to 'a'. This means A is an isomorphism of V_b and V'_b . Because of the inequalities (I), A is a topological isomorphism too. But V'_b is always complete as the dual of any normed space over **R** or **C** is always complete. Hence, V_b is also complete.

(ii) Sufficiency. Let us assume that V_b is complete. We have to prove that $A(V_b) = V'_b$. Suppose not, then $\exists f \in V'_b$ such that $f \notin A(V_b)$. Since V_b is complete, the inequalities (I) show that $A(V_b)$ is a closed subspace of V'_b . Hence, by the Hahn-Banach theorem, $\exists \beta \in V''_b$, the double dual of V_b such that β vanishes on $A(V_b)$, but $\beta(f) \neq 0$. Since V_b is complete and hence is a Hilbert space, it is reflexive. Therefore, β is given by an element of V_b . i.e. $\exists u \in V$ such that $\beta(h) = h(u) \forall h \in V'_b$. Thus, \exists an element $u \in V$ such that $f(u) \neq 0$, but $a(u, v) = 0 \forall v \in V$. But $a(u, v) = 0 \forall v \in V \Rightarrow a(u, u) = 0$ in particular, which in turn implies that u=0. But this contradicts the fact $f(u) \neq 0$. Hence, $A(V_b) = V'_b$, proving that V_b has the right Riesz representation property with respect to 'a'.

Corollary (Lax-Milgram theorem). Let (V, || ||) be a Banach space over **R**. Let 'a' be a continuous bilinear form on V which is coercive. i.e. $\exists \delta > 0$ such that $a(x, x) \ge \delta ||x||^2 \forall x \in V$. Then, $\forall f \in V'$, the dual of $(V, || ||), \exists$ a unique $u \in V$ (resp. unique $w \in V$) such that f(v) = a(v, u) (resp. $f(v) = a(w, v)) \forall v \in V$.

Proof. Since 'a' is coercive, $a(x, x) > 0 \forall x \neq 0$. The continuity and coercivity of 'a' imply that $(V, \| \|)$ and V_b are isomorphic. Hence, 'a' is continuous on $V_b \times V_b$ and V_b is complete. Therefore, by Theorem 1, V_b has both right and left Riesz representation properties with respect to 'a'. From this, the corollary follows immediately by observing that $f \in V' \Leftrightarrow f \in V'_b$. Q.E.D.

463

S. RAMASWAMY

The idea behind the proof of the Lax-Milgram theorem is, we first prove it for the space V_b on which 'a' is trivially coercive, by assuming V_b is complete and 'a' continuous on $V_b \times V_b$. This is Theorem 1. Then, we are able to prove the theorem immediately for the Banach space $(V, \| \|)$ on which 'a' is continuous and coercive, as $(V, \| \|)$ then becomes isomorphic to V_b .

The same idea helps us to generalize the result of Lions-Stampacchia [1] on variational inequalities to Banach spaces. They proved the theorem for Hilbert spaces.

Theorem 2 (Lions-Stampacchia). Let (V, || ||) be a Banach space over **R**. Let 'a' be a continuous, bilinear form on V. Then, given any closed convex set K and any $f \in V', \exists$ a unique $u \in K$ such that

 $a(u, v-u) \ge f(v-u) \forall v \in K.$

Proof. Since 'a' is continuous and coercive on $(V, \| \|)$, $(V, \| \|)$ and V_b are isomorphic. Therefore, 'a' is continuous on $V_b \times V_b$ and V_b is a Hilbert space. Further, 'a' is trivially coercive on V_b . Hence, the theorem of Lions-Stampacchia applies in this case. Thus, for any closed convex set L of V_b and any $f \in V'_b$, \exists a unique $u \in L$ such that $f(v-u) \leq a(u, v-u) \forall v \in L$. From this, Theorem 2 follows immediately by observing that $(V, \| \|)$ and V_b have the same dual and the same closed convex sets. Q.E.D.

Reference

 Lions-Stampacchia: Variational inequalities. Comm. Pure Appl. Math., 20, 493-519 (1967).