15. On Certain Numerical Invariants of Mappings over Finite Fields. IV

By Takashi Ono

Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1981)

Introduction. This is a continuation of our papers [2], [3] which will be referred to as (I), (II), respectively, in this paper.¹⁾ Let K be a field of characteristic not 2 and X be a composition algebra over K. By definition, X is an algebra (not necessarily associative) with 1 over K together with a nonsingular quadratic form q_x such that $q_x(xy)$ $=q_x(x)q_x(y)$, $x, y \in X$. Thanks to a theorem due to Hurwitz (cf. [1], Theorem 3.25, p. 73), such algebras are completely determined. Namely, an algebra (X, q_x) is one of the following: (I) X=K; (II) X $=K\oplus K$; (III) X=a quadratic extension of K; (IV) X=a quaternion algebra over K; (V) X=a Cayley algebra over K. Furthermore, if X=K, then $q_x(x)=x^2$; otherwise q_x is the norm form on X. Therefore, we shall put $n(x)=q_x(x)$.

From now on, assume that $K = F_q$, the finite field with q (odd) elements. Then the composition algebras $(X, n(x) = \bar{x}x)$ can be described more precisely as follows:

(I) $X = K, \bar{x} = x, n(x) = x^2$,

(II) $X = K \oplus K$, $\bar{x} = (x_2, x_1)$ if $x = (x_1, x_2)$, and $n(x) = x_1 x_2$,

(III) $X = F_{q^2}$ = the unique quadratic extension of K, \bar{x} = the conjugate of x, $n(x) = \bar{x} x$,

(IV) $X = K_2$ = the algeba of matrices of order 2, $\bar{x} = \begin{pmatrix} x_4 & -x_2 \\ -x_3 & x_1 \end{pmatrix}$

if
$$x = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$
, and $n(x) = \bar{x} x = \det x$,

(V) $X = K_2 \times K_2$ with the multiplication $zw = (xu + \overline{v}y, vx + y\overline{u})$ for z = (x, y), $w = (u, v) \in X$ where $\overline{x} =$ the adjoint of $x \in K_2$ defined above, and $\overline{z} = (\overline{x}, -y)$, $n(z) = n(x) - n(y) = \det x - \det y$.

The Hopf map F associated to a composition algebra (X, n) is the map

(0.1) $F: Z = X \times X \rightarrow W = K \times X$ defined by F(z) = (n(x) - n(y), 2xy).

Our purpose is to determine the invariants σ_F , ρ_F introduced in the paper (I) for the map F with respect to the quadratic character χ of K.

¹⁾ For example, we mean by (II.3.4) the item (3.4) in (II).

§1. Statement of the results. Let $K = F_q$ (q: odd) and let F be a quadratic mapping $X \rightarrow Y$ of vector spaces over K, $n = \dim X$, $m = \dim X$

Y. For each $\lambda \in Y^*$ (the dual of Y) put $F_{\lambda} = \lambda \circ F$, a quadratic form on X. Denote by r_{λ} the rank of F_{λ} . Put

(1.1) $S_{F_{\lambda}} = \sum_{x \in X} \chi(F_{\lambda}(x)),$

where χ means the quadratic character of the multiplicative group K^{\times} (extended by $\chi(0)=0$). It is known that (cf. (II.1.3), (II.1.4))

(1.2) S $= \int 0$, if r_{λ} is even,

$$(1.2) \xrightarrow{\sim} F_{\lambda} (q^{n-((r_{\lambda}+1)/2)}(q-1)\chi((-1)^{(r_{\lambda}-1)/2}d_{\lambda}), \text{ if } r_{\lambda} \text{ is odd,}$$

where $d_{\lambda} = \det F_{\lambda}$. From (1.2) it follows that

(1.3)
$$\sigma_F \stackrel{\text{def}}{=} \sum_{\lambda \in Y^*} |S_{F\lambda}|^2 = (q-1)^2 \sum_{r\lambda \text{ odd}} q^{2n-r\lambda-1}.$$

By (I.1.11), (1.3), we have

(1.4)
$$\rho_F \stackrel{\text{def}}{=} \sum_{(x,y) \in P} \chi(F(x) : F(y))^{2} = q^{n-m}(q-1) \sum_{r_\lambda \text{ odd}} q^{n-r_\lambda}.$$

(1.5) Theorem. Let X be a composition algebra over the field $K = F_q$ (q: odd), and $F: X \times X \to K \times X$ be the associated Hopf map. Then, we have $S_{F_\lambda} = 0$ for all $\lambda \in (K \times X)^*$ (and hence $\sigma_F = \rho_F = 0$) except for the case (I) X = K, $q \equiv 1 \pmod{4}$, and in the latter case $\sigma_F = 2q^2(q-1)^3$, $\rho_F = 2q(q-1)^2$.

Our proof of the theorem splits into five parts according to the classification.

§ 2. Type (I). In this case, we have X = K, $n(x) = x^2$, $Z = X^2 = K^2$, $W = K \times X = K^2$ and $F(z) = (x^2 - y^2, 2xy)$. Hence, $F_{\lambda}(z) = \lambda_1(x^2 - y^2) + \lambda_2(2xy)$ $= \lambda_1 x^2 + 2\lambda_2 xy - \lambda_1 y^2$ and the corresponding matrix is

(2.1)
$$\Phi_{\lambda} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & -\lambda_1 \end{pmatrix}.$$

When $\lambda \neq 0$, we have $r_{\lambda} = \operatorname{rank} \Phi_{\lambda} = 1$ or 2 according as $\lambda_{2}^{1} + \lambda_{2}^{2} = 0$ or $\neq 0$. Therefore $r_{\lambda} = 2$ always when $q \equiv 3 \pmod{4}$. On the other hand, when $q \equiv 1 \pmod{4}$, since the number of $\lambda = (\lambda_{1}, \lambda_{2}) \neq 0$ with $\lambda_{1}^{2} + \lambda_{2}^{2} = 0$ is 2(q-1), there are 2(q-1) λ 's for which $r_{\lambda} = 1$. For each such λ we have, by (1.2), $|S_{r_{\lambda}}| = q(q-1)$ and so $\sigma_{F} = 2q^{2}(q-1)^{3}$, $\rho_{F} = 2q(q-1)^{2}$ by (1.3), (1.4).

§ 3. Type (II). In this case, we have $X = K \oplus K$, $n(x) = x_1 x_2$ for $x = (x_1, x_2) \in X$, $Z = X \times X$, $W = K \times X$ and F(z) = (n(x) - n(y), 2xy) where $xy = (x_1y_1, x_2y_2)$. Hence, if we put $\lambda_1 = \gamma \in K$, $\lambda' = (\alpha, \beta) \in X^*$, we have $F_{\lambda}(z) = \lambda_1(n(x) - n(y)) + 2\lambda'(xy) = \gamma(x_1x_2 - y_1y_2) + 2\alpha x_1y_1 + 2\beta x_2y_2$ and the corresponding matrix is

(3.1)
$$\Phi_{\lambda} = \begin{pmatrix} \frac{\gamma}{2}J & A \\ A & -\frac{\gamma}{2}J \end{pmatrix}$$

No. 1]

²⁾ As for the meaning of unexplained notations, see (I. \S 1).

with

$$(3.2) J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}.$$

Observe that $r_{\lambda}=4-\dim(\operatorname{Ker} \Phi_{\lambda})$. Therefore, if $\gamma=0$, then dim $(\operatorname{Ker} \Phi_{\lambda})=2 \dim(\operatorname{Ker} A)\equiv 0 \pmod{2}$, hence $r_{\lambda}\equiv 0 \pmod{2}$. On the other hand, if $\gamma\neq 0$, since we have

(3.3)
$$\Phi_{\lambda}\begin{pmatrix} x\\ y \end{pmatrix} = 0 \iff \begin{cases} \frac{\gamma}{2}Jx + Ay = 0, \\ \frac{\gamma}{2}Jy - Ax = 0, \end{cases}$$

on eliminating y, we have

(3.4) $(\gamma^2 J + 4AJA)x = 0.$

Since a simple computation shows that

 $(3.5) \quad AJA = \alpha\beta J,$

(3.4) is equivalent to the trivial equation

(3.6) $(\gamma^2 + 4\alpha\beta)u = 0$,

which implies that $r_{\lambda} = \operatorname{rank} \Phi_{\lambda} = 4 - \dim(\operatorname{Ker} \Phi_{\lambda}) = 4 - (0 \text{ or } 2) \equiv 0 \pmod{2}$, again.

§4. Type (III). In this case, we have $X = F_{q^2} = K(\theta)$, $\theta^2 = m \in K$, $n(x) = x_1^2 - mx_2^2$ if $x = x_1 + \theta x_2$, $Z = X \times X$, $W = K \times X$ and F(z) = (n(x) - n(y), 2xy) where $xy = (x_1y_1 + mx_2y_2) + (x_1y_2 + x_2y_1)\theta$. Hence, if we put $\lambda_1 = \gamma \in K$, $\lambda' = (\alpha, \beta) \in X^*$, we have $F_{\lambda}(z) = \lambda_1(n(x) - n(y)) + 2\lambda'(xy) = \gamma(x_1^2 - mx_2^2 - y_1^2 + my_2^2) + 2\alpha(x_1y_1 + mx_2y_2) + 2\beta(x_1y_2 + x_2y_1)$ and the corresponding matrix is

(4.1)
$$\Phi_{\lambda} = \begin{pmatrix} \gamma J & A \\ A & -\gamma J \end{pmatrix}$$

with

(4.2)
$$J = \begin{pmatrix} 1 & 0 \\ 0 & -m \end{pmatrix}, \quad A = \begin{pmatrix} \alpha & \beta \\ \beta & m\alpha \end{pmatrix}.$$

Observe that $r_{\lambda}=4-\dim(\operatorname{Ker} \Phi_{\lambda})$. Therefore, if $\gamma=0$, then $\dim(\operatorname{Ker} \Phi_{\lambda})=2 \dim(\operatorname{Ker} A)$ and so $r_{\lambda}\equiv 0 \pmod{2}$. On the other hand, if $\gamma\neq 0$, since we have

(4.3)
$$\Phi_{\lambda}\begin{pmatrix} x\\ y \end{pmatrix} = 0 \iff \begin{cases} \gamma J x + A y = 0, \\ \gamma J y - A x = 0, \end{cases}$$

we have

(4.4) $(\gamma^2 J + A J^{-1} A) x = 0.$

Since a simple computation shows that

$$(4.5) \quad AJ^{-1}A = \left(\alpha^2 - \frac{\beta^2}{m}\right)J,$$

(4.4) is equivalent to the trivial equation

(4.6)
$$\left(\gamma^2+\left(\alpha^2-\frac{\beta^2}{m}\right)\right)u=0,$$

which implies that $r_{\lambda} = \operatorname{rank} \Phi_{\lambda} = 4 - \dim(\operatorname{Ker} \Phi_{\lambda}) = 4 - (0 \text{ or } 2) \equiv 0 \pmod{2}$, again.

§ 5. Type (IV). In this case, we have $X = K_2$, $n(x) = \det x$, $Z = X \times X$, $W = K \times X$ and F(z) = (n(x) - n(y), 2xy) where xy is the matrix multiplication. Hence, if we put $\lambda_1 = \gamma \in K$, $\lambda' = \alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{pmatrix} \in X^*$ with

 $\alpha x = \sum_{i=1}^{4} \alpha_i x_i, \text{ we have } F_{\lambda}(z) = \lambda_1(n(x) - n(y)) + 2\lambda'(xy) = \gamma(x_1 x_4 - x_2 x_3 - y_1 y_4 + y_2 y_3) + 2\alpha_1(x_1 y_1 + x_2 y_3) + 2\alpha_2(x_1 y_2 + x_2 y_4) + 2\alpha_3(x_3 y_1 + x_4 y_3) + 2\alpha_4(x_3 y_2 + x_4 y_4)$ and the corresponding matrix is

(5.1)
$$\Phi_{\lambda} = \begin{pmatrix} \frac{\gamma}{2}J & A \\ t_{A} & -\frac{\gamma}{2}J \end{pmatrix}$$

with

$$(5.2) \quad J = \begin{pmatrix} & & 1 \\ & -1 & \\ 1 & & \end{pmatrix}, \quad A = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 & 0 \\ 0 & 0 & \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 & 0 & 0 \\ 0 & 0 & \alpha_3 & \alpha_4 \end{pmatrix}$$

Observe that $r_{\lambda} = 8 - \dim(\operatorname{Ker} \Phi_{\lambda})$. Therefore, if $\gamma = 0$, then $\dim(\operatorname{Ker} \Phi_{\lambda}) = \dim(\operatorname{Ker} A) + \dim(\operatorname{Ker} {}^{t}A) = 2 \dim(\operatorname{Ker} A)$ and so $r_{\lambda} \equiv 0 \pmod{2}$. On the other hand, if $\gamma \neq 0$, since we have

(5.3)
$$\Phi_{\lambda}\begin{pmatrix} x\\ y \end{pmatrix} = 0 \iff \begin{cases} \frac{\gamma}{2}Jx + Ay = 0, \\ \frac{\gamma}{2}Jy - {}^{t}Ax = 0, \end{cases}$$

we have

(5.4) $(\gamma^2 J + 4AJ^t A)x = 0.$

Since a simple computation shows that

(5.5) $AJ^{t}A = (\det \alpha)J$,

(5.4) is equivalent to the trivial equation

(5.6) $(\gamma^2 + 4 \det \alpha)u = 0$,

which implies that $r_i = \operatorname{rank} \Phi_i = 8 - \dim(\operatorname{Ker} \Phi_i) = 8 - (0 \text{ or } 4) \equiv 0 \pmod{2}$, again.

§6. Type (V). In this case, we have $X=K_2 \times K_2$, $n(z)=\det x$ $-\det y$ if z=(x, y)=X, $Z=X \times X$, $W=K \times X$ and F(z, w)=(n(z)-n(w), 2zw) where z=(x, y), $w=(u, v) \in Z=X \times X$ and $zw=(xu+\overline{v}y, vx+y\overline{u})$. Hence, if we put $\lambda_1=\gamma \in K$, $\lambda'=(\alpha, \beta) \in X^*$ with $\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{pmatrix}$, $\beta = \begin{pmatrix} \beta_1 & \beta_2 \\ \beta_3 & \beta_4 \end{pmatrix}$, we have $F_{\lambda}(z, w) = \lambda_1(n(z)-n(w)) + 2\lambda'(zw) = \gamma(\det x - \det y - \det u + \det v)$ $+2\alpha(xu+\overline{v}y) + 2\beta(vx+y\overline{u})^{3}$ and the corresponding matrix is

³⁾ We here omit the expression in terms of coordinates because it is too long.

(6.1)
$$\Phi_{\lambda} = \begin{pmatrix} \frac{\gamma}{2}J & A \\ {}^{t}A & -\frac{\gamma}{2}J \end{pmatrix}$$

with

$$A = \begin{bmatrix} \begin{array}{c|c} & 1 & & & \\ & -1 & & & \\ & & -1 & & \\ 1 & & & & \\ \hline & & & & 1 \\ & & & 1 \\ & & & 1 \\ & & & -1 \\ \end{array} \end{bmatrix},$$

$$A = \begin{bmatrix} \begin{array}{c|c} \alpha_1 & \alpha_2 & 0 & 0 & \beta_1 & 0 & \beta_3 & 0 \\ 0 & 0 & \alpha_1 & \alpha_2 & \beta_2 & 0 & \beta_4 & 0 \\ \alpha_3 & \alpha_4 & 0 & 0 & 0 & \beta_1 & 0 & \beta_3 \\ \hline \alpha_3 & \alpha_4 & 0 & 0 & 0 & \beta_1 & 0 & \beta_3 \\ \hline \alpha_3 & \alpha_4 & 0 & 0 & 0 & \beta_1 & 0 & \beta_3 \\ \hline 0 & -\beta_2 & 0 & \beta_1 & 0 & 0 & -\alpha_3 & \alpha_1 \\ \hline \beta_2 & 0 & -\beta_1 & 0 & 0 & 0 & -\alpha_4 & \alpha_2 \\ \hline 0 & -\beta_4 & 0 & \beta_3 & \alpha_3 & -\alpha_1 & 0 & 0 \\ \hline \beta_4 & 0 & -\beta_3 & 0 & \alpha_4 & -\alpha_2 & 0 & 0 \\ \end{bmatrix},$$

Observe that $r_{\lambda} = 16 - \dim(\operatorname{Ker} \Phi_{\lambda})$. Therefore, if $\gamma = 0$, then $\dim(\operatorname{Ker} \Phi_{\lambda}) = \dim(\operatorname{Ker} A) + \dim(\operatorname{Ker} A) = 2 \dim(\operatorname{Ker} A)$ and so $r_{\lambda} \equiv 0 \pmod{2}$. On the other hand, if $\gamma \neq 0$, since we have

(6.3)
$$\Phi_{\lambda}\begin{pmatrix}x\\y\end{pmatrix}=0 \iff \begin{cases} \frac{\gamma}{2}Jx+Ay=0,\\ \frac{\gamma}{2}Jy-{}^{\iota}Ax=0, \end{cases}$$

we have

(6.4) $(\gamma^2 J + 4AJ^t A)x = 0.$

Since a simple (but lengthy) computation shows that

(6.5) $AJ^{\iota}A = (\det \alpha - \det \beta)J$,

(6.4) is equivalent to the trivial equation

(6.6) $(\gamma^2 + 4(\det \alpha - \det \beta))u = 0$,

which implies that $r_i = \operatorname{rank} \Phi_i = 16 - \dim(\operatorname{Ker} \Phi_i) = 16 - (0 \text{ or } 8) \equiv 0 \pmod{2}$, again. Q.E.D.

References

- Schafer, R.: An Introduction to Nonassociative Algebras. Academic Press, New York (1966).
- [2] Ono, T.: On certain numerical invariants of mappings over finite fields. I. Proc. Japan Acad., 56A, 342-347 (1980).
- [3] ——: ditto. II. ibid., 56A, 397-400 (1980).