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Introduction. We present some rsults on Eisenstein series for
Siegel modular groups. These results concern the action of Hecke
operators and theFourier coefficients. We refer to [3]. for the moti-
vation of these results. We use the notations of [4].

1. Eisenstein series. For integers n>__0 and k>__0, we denote
by M(F) (resp. S(F)) the C-vector space of all Siegel modular (resp.
cusp) forms of degree n and weight k. (See [4, 3] for Siegel modular
forms of degree zero.) The space of Eisenstein series is E(F)
=S(F)+/-, which is the orthogonal complement of S(F) in M(F)
with respect to the Petersson inner product (, }. For each even
integer k>2n, the space E(F) is constructed from M(Fn_) by using
the Eisenstein series, of Langlands [5] and Klingen [1]. To be precise
we define a C-linear map ](-)" M(F)M(F) for Orn and
even k>n+r+ 1 as follows. Each modular form f in M(F) is written
uniquely as f==oE,(.,f) with cusp forms feS(F)(O]r),
where E,(.,f) is the Eisenstein series defined in Klingen [1]. We

kdefine [f](n-)==oE,(.,f). Then [f]( ) is a modular form in
M(F) satisfying -([f](-))=f, where is the Siegel operator. In
particular, ](0) is the identity map, and we write ]=[ ](1) for
simplicity. Then it holds that

E(Fn) [M(F_)] =Image ([ ]" M(F_)M(Fn))
or nl and even k>2n. More precisely we have E(Fn)=[S(F)](-)

and =oE()=[M(r)](n-) or Orn and even k>n+r+l, where
E(F) () in the notation of Maass [6]. For 0<r<n and even k>2n,

](n-, is the following (n r)-times composition of ("(n-r)-th
power")

M(F) > M(F+) >... M(F).
We use also the following extended definition" if f M(F), r]n,

n+r+ 1 even, and F [fief- then we define that IF]-) [f]-
Theorem 1. Let f be an eigen modular form in M(F) for rO

and even k>n+r+l with nr. Then [f](-) is an eigen modular

form in M(F).
Proof. Inthis proof ] runsover ]=0, ..., r. Writef= [f](-)

with f e S(F), then [f](-)= [f](-) e @=0 E(F). Take a Hecke
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operator T e T(M(F)). Since E(F) is stable under T(M(F)), we
have T[f](n-r)-- [g](n-J) with g e S(F), hence

Denoting by T* the image o T under the surjective map T(M(F))
--T(M(F)) constructed by Maass [6] and Zharkovskaya [13], we have
qn-T[f](n-) T*-[f](-) T*f--(T* f)f Hence we have

[g--2(T* f)f](-)=0
so g 2(T* Hence [f](n-)is anf)y and T[f](-) 2(T* f)[f](-).
eigen modular form in M(F) with the eigenvalue 2(T, [f](- )) (T*, f)
for each T e T(M(F)). Q.E.D.

Remark 1. Let F be an eigen modular form in M(F) for n>_0

and k_>_ 0, and assume that F fev 0 for an integer r in 0__< r__< n.
Then f is an eigen modular form in M(F) and it holds that 2(T, F)
=2(T*, f) for all T e T(M(F)). In fact, from TF=2(T, F)F we have

T’f= T*q-rF=q-TF=2(T, F)q-F=2(T, F)f In particular we
have 2(p,F)=2(p,f)VI);/(l+p-) for all prime numbers p; see
Maass [6] and Zharkovskaya [13].

2. A characterization of Eisenstein series. We prove a uni-
queness property of Eisenstein series in a special case.

Theorem 2. Let f be an eigen modular form in M(F). Let
n>= 1 be an integer, and assume that k is an even integer larger than
n+l (resp. n+2) if f#O (resp. el=0). Then"

(1) m(([f](n-)))= 1.
(2) Let F be an eigen modular form in M(F) satisfying I(F)

=2([f](.-)), then there exists a non-zero constant eC such that
F=r[f](-).

(3) Let F be an eigen modular [orm in M(F) satisfying O-(F)
f then F=[f](-).

Proof. (1) is eluivalent to (2), and (3) follows from (2) by Remark
1 in 1 (from -(F)=f we have 2(F)=2([f](-)) by Remark 1, hence
F=r[f](-) by (2), then -(F)=rf, so r=l). Hence it is sufficient
to prove (2). Since the ease n= 1 is well-known (the multiplicity one
theorem for M(FJ), we assume that n>=2 hereafter.

We prove the following refinement of (2)"
(2*) Let F be an eigen modular form in M(F) satisfying 2(p, F)

=(p, [f](-)) for all prime numbers p, then there exists a non-zero
constant e C such that F=7[f](-).
Hereafter in this prooL p runs over all prime numbers.

We show first that "-’(F)4:0. Suppose that "-’(F)=0. Let r
be the maximal integer _<_n such that -(F)4:0. Then h=n-(’F) is
an eigen cusp form in S(Fr) and 2<=r<=n. By Theorem I and Remark
1, we have
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(p, F)--](p, h) I (lq-P-)
j--r+l

and

a(p, [f](-l,)=(p, f) ] (l+p-).
j=2

Hence, from the assumption (p,F)=(p, [f]-;) we have

(p,h)=(p, f) (l+p-).
j=2

Using the estimation of Raghavan [9, Theorem 1] we have (p,h)
=O(pr/). We divide into two cases" (i) f=O, and (ii) el#0. In
the case (i), by the 9-result of Rankin [10, Theorem 2] we have (p, f)

9(p(-)/), hence 2(p, f) : (1 +p-J) (p((2r-1)k-r(r+,)+ )/). Hence
we have a contradiction if rk(2r-1)k--r(r+l)+l (i.e., kr+2
+(r--1)-). This inequality is satisfied, since r+2+(r--1)-gn+2
+(n-1)-’ and k is an even integer larger than n+ 2. In the case (ii),
we have 2(p, f)=l+p-=9(p-), hence

j=2

Since kn+l, we haverk2rk--r(r+l)(i.e., kr+l), hence we have
a contradiction. Thus we have n-i(F)O. (We note here that (3)
follows rom this partial fact by considering H=F--[f]("-); if H#0
then H is an eigen modular orm satisfying 2(p,H)=2(p, [f](-)) and
n-(H):O, which is impossible, hence H=0.)

Put g="-(F). Then g is an eigen modular form in M(F)
satisfying 2(p, g)=2(p, f). Hence, there exists a non-zero constant
e C such that g=yf (by the multiplicity one theorem or M(F,)).

Put H=F--[f](n-), then "-(H)=0. If H#0, then H is an eigen
modular orm in M(Fn) satisfying 2(p, H).= 2(p, F)= 2(p, [f](-)). This
is impossible as shown above. Thus F=[f](n-). Q.E.D.

Remark 2. For n=2, Theorem 2(2) is proved alternatively as
follows. Assume that 2(F)=2([f]) as above. Then we have L(s, F)
=L(s, [f])=L(s, f)L(s--k+2, f) for the standard L-functions as in [2].
Suppose that (F)=0. Then, from the standard estimation 2(re, F)
=O(m) asm (cf. [2, 2.2(3)]), it follows that the Euler product

L(s, F)= (1-(2(p)p-"-(2(p)-2(p)- p-)p-"
P

+2(p)p-a-a_ p4k-6-4s))-i
converges, absolutely in Re(s)k+l. Hence L(s,F)O or Re(s)

k+ 1. As is well-known, this contradicts to L(s, F) L(s, f)L(s-- k
+2, f). Thus (F)#0, and the rest is the same as in the above proof.. Fourier coefficients of isenstein series. We prove some
rationality (algebraicity, integrality) properties of Fourier coefficients
of Eisenstein series treated in 2. We denote by Aut (C) the group
o all field-automorphisms of C, which acts on f=roa(T,f)q
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e M(Fn) by a(f)=rz0 a(a(T, f))qr e M(Fn) for each a e Aut (C) (for
n=>0 and even k_>_0); see [4].

Theorem 3. Let f be a modular form in M(F1). Let n>=l be
an integer, and assume that k is an even integer larger than n+l
(resp. n+2) if f#O (resp. #f- 0). Then"

(1) For each a e Aut (C) we have a([f](-))= [a(f)](-1).
(2) Assume that f e M(F)K for a subfield K of C. Then

e M(F)K.
Proof. Let {f, ...,f} be an eigen basis (i.e., a basis consisting

of eigen modular forms) of M(F), and write f==1 c,f, with c, e C.
Then, for each a e Aut (C) we have a([f](n-1)) ,’=1 a(c)a([f.](-lO and
[a(f)](n-)--=la(C,)[a(f,)](-). Hence to prove (1) it is sufficient to
prove the case where f is an eigen modular form. Put F-[f]-’).
Then, for each a e Aut (C), a(F) is an eigen modular form in M(F)
(see [4, 1]) satisfying #-(a(F))=a(f). Hence, by Theorem 2(3), we
have a(F)-[a(f)](n-). This proves (1), hence we have (2) also. Q.E.D.

We say that an eigen modular form f e M(F) is normalized if
a(1, f)= 1.

Theorem 4. Let f, k, and n be as in the above Theorem 3, and
assume that f is a normalized eigen modular form. Then, there exists
a non-zero constant e Z(f) such that ,[f](n-) e M(F)z(z).

Proof. By Theorem 3(2), [f](-l) e M(Fn)q(z). On the other hand,
by Theorem 2(1) and [4, Theorem 3], there exists a non-zero constant
r e Z([f](-)) such that r[f](n-) e M(F)z(c,-,). (If n<__2, we have
Z([f](-))=Z(f) by Maass [6], hence we have Theorem 4 for n=<2 with
r=,.) Put =N(.) where N" Q([f](-))-+Q(f) denotes the norm map.
Then r is a non-zero constant iri, Z(f) and r[f](-) belongs to

Hence we have Theorem 4. Q.E.D.
Remark 3. Let f be as in Theorem 4. If #f4=0, then much

more precise results are obtained by Siegel [11] [12] and Maass [7] [8].
The case f=0 is examined in [3] which shows that we can take

r=71211 (resp. 7) for [A.0] (resp. [z/]) (these , being "minimal") and
suggests that we can take r=the "numerator of L*(2k--2, f)" for [f].

Remark 4. As is seen from the proofs of Theorems 254, these
results would hold in the general situation as in Theorem 1 if a suitable
multiplicity one conjecture holds.
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