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In this note, a conformal diffeomorphism means a non-homothetic
conformal one. Let M M1 M2 and M*=M* M* be connected prod-
uct Riemannin manifolds of dimension n>=3, and denote the metric
product structures by (M, g, F) and (M*, g*, G) respectively. Several
geometers [1]-[3], [5]-[8] proved non-existence of global conformM dif-
feomorphism between complete proluct Riemannian manifolds with
certain properties. The purpose of this note is to announce the
following

Theorem. If M and M* are complete product Riemannian mani-
folds, then there is no global conformal di]eomorphism of M onto M*
such that it does not commute the product structures F and G, FG
=GF, somewhere in M.

This is an improvement o the main theorem in a previous paper
[5]. As. the contraposition, a conformal diffeomorphism of M onto M*
has to commute the product structures F and G everywhere in M, and
an example of such a conformal diffeomorphism was given in [5].

Outline of the proof. Let M1 and M. be of dimension n and n2
respectively, n,+n=n, and (x, x) a separate coordinate system of
M, (x9 belonging to M nd (x) to M. Latin indices run on

i, ], k= l, 2, ., n p, q, r=n+ l, ., n
respectively, and Greek indices , 2,/, on the rnge 1 to n. The
metric tensor g=(g,) of M has pure components gj and gqp only with
respect to the separate coordinate system (x, xp).

A conformal diffeomorphism f of M to M* is characterized by a
change of the metric tensors

1(1) g,*=-g,
p being a positive-valued scalar field. The integrability of the product
structure G with respect to g* in M* is ec/uivalent to

p
where g indicates covariant differentiation in M and p=gp, p=pg.
Denote the gradient vector field (p) by Y, the parts (p9 along to M by

Y and (p) to M. by Y. Put =[YI=pp=[YI+IY[ and
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N-(PI Y(P)- 0}, N- (PI Y(P)--0},
U-{P]Y(P)=/=O, Y(P)=/=0}, V--{PIFG=/=GF at P}.

Starting from the equation (2), we have the inclusion relations
UVM-N N.

By definition, a special concircular scalar field p satisfies
( 3 ) P’,p=(kp--b)g,,
k and b being constants. The trajectories o Y=(p) are geodesics,
called p-cures. In neighborhood o an ordinary point P o p, Y(P)
:/:0, there is an dapted coordinate system (u, u), a, fl, .=2, ..., n,
such that u is the arc-length o p-curves, p is a unction o u only, nd
the metric o2 M is given in the 2orm

ds=du+ {’(u)}ds,
where ds=fdudu is the metric form of an (n-1)-dimensional Rie-
mannian manifold M. I M is complete and k0, then M is a sphere
and M is the equatorial hypersphere of M. The equation (3) reduces
to the ordinary differential equation

p"(u) kp+ b
long the p-curves, see [4].

The ssumption o the theorem means V:/:.
Cs.e (I) o U=. Then M=N J N, and we suppose N:/:. In

connectecl component V0 o V N, we have the equation

( 4 )
c being a positive constant, and
( 5 q-=pp cp.
In an adapted coordinate system in V0, p is given by p=aeu, a being a
constant. It follows from this expression and the differentiability of
p that M=N and the equation (4) is valid on the whole manifold M.

I U:/:, then it is proved that is the sum
(6) =pp=+
of functions # of (x*) and of (x’), and the parts , and satisfy
the equations
(7) 17(q--kp)=tgg, 17g(+kp)=$2g,
where we have put

9=k(--#--kp)+b,
b being a constant. Moreover we have the equations

(8)

(9)

and

(10) VVV k(2gV-kgVq-gVO),
VVqV k(2gqV-bgrq7p.+ gvpZq).
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Case (II) where /c-0 in U. The equations, (8) and (9) together
make the tensor ecluation
(11) 17,p gIT+gflT+
,and the equations (7) do
,(12) bg.
This case splits into three cases.

( a ) b=0 and is constant in U. Noting (6), we can obtain the
euation

Referring this equation to an adapted coordinate system (u, u0 for p,
nd choosing suitably the arc-length u, we obtain the expression

(13) p=u.
(b) b=0 and is not constant. Then we have g,g#=0. Inte-

grating the euation (11) in an adapted one for , we can see that this
.case does not occur locally.

(c) be0 in some connected component of U. In an adapted
coordinate system (u, u") for , p is expressed as

(14) p=[(bu+4r)+4frr],
where r is a solution of the euation
(15) 7rgg.r -(2f.gr+frg.r+fr.gr)
in an (n-1)-dimensional manifold M with metric tensor

Case (III) where kC0 in some component U0 of U. By means of
(7), --kp and +kp are special concircular scalar fields in M Uo
and M Uo. We may put k c, c0. Referring (7)-(9) to adapted
coordinate-systems (u, u0 in M Uo and (v, v0 in M Uo, a=2, ...,
n, =n+2, ..., n, and noting (6), we obtain the expressions of p in

( a ) - w --w s.in cv + A e cos. cv +B
C

(16) p= (b) - o) eos.h e--o), sin e+ Ae sinh e cos ev +B

1(( e ) - o) sinh e--o) sin ev + _A eosh e cos ev +B

according to the forms of solution of (7), where A, B are constants,
is a function of and o). a funetrion of v satisfying certain equations
similar to (lg).

By means of the expressions (16), we see that, in any ease of the
above, the sets. N and N are border sets. in M, the constants appearing
in (16) are common with all components of U and the expressions are
valid over the whole manifold M.

If 21//is complete, then so are the parts M and M, in particular,

the forms
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M2 is 1-dimensional or an n-sphere, and , in Case (I, c)and w in Case
(III) are constant or bounded.,

For example, we treat Case (III, a). Let P be a point of U, M(P)
the part passing through P, F a p-curve of the restriction (-cp)l
M(P), F*--f(F), and s* the arc-length of F*. Then w on F should
be positive and we put o,--2a. We take a value u0 so large that

(a/c)e for uu0, and So* the value corresponding to u0. Then we
obtain the ineluality

s*--S*o --i e_cuo.

Hence the length of F* is. bounded as u-. This contraclicts to the
globlness of the conformal diffeomorphism f" M---M*.
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