
140 Proc. Japan Acad., 7, Ser. A (1981) [Vol. 57(A),

Congruences between Siegel Modular Forms
Degree Two. II
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Introduction. We supplement the previous note [6] by describing
liftings of congruences. In particular, the congruences in Theorems
2 and 3 of [6] are considered to be congruences lifted from degree 1 to
degree 2. The author would like to thank Prof. It. Maass for com-
municating that Prof. D. Zagier ([16]) proved completely the Conjec-
tures 1 and 2 of [5] by using recent results of Prof. W. Kohnen after
Maass [10] [11] [12] and Andrianov [2] (cf. 1 below).

1. Liftings. We denote by M(F) (resp. S(F)) the vector
space over the complex number field C consisting of all Siegel modular
(resp. cusp) forms of degree n and weight k for integers n>__ 0 and k >__ 0.
The space of Eisenstein series is denoted by E(F) which is the or-
thogonal complement of S(F) in M(F) with respect to the Petersson
inner product. We say that a modular form f in M(F) is eigen if f
is a non-zero eigenfunction of all Hecke operators on M(F). Let f
be an eigen modular form in M(F) for n--l, 2. We define the
(standard) Hecke polynomial at a prime p by H(T, f)--1--(p, f)T
+p-T if n=l, and H(T, f)=l--(p, f)T+((p)2--2(p)--p-’)T
--p-b(p)T+p’-T if n=2, where T is an indeterminate and (m, f)
is the eigenvalue of the Hecke operator T(m) for f" T(m)f=,(m, f)f.
We define the (standard) L-function by L(s, f)-- 1-[ H(P-, f)- where
p runs over all prime numbers. We denote by Q(f) the field generated
by ((m, f)lm>=l} over the rational number field Q, and we put Z(f)
Q(f) Z, where Z is the rational integer ring, and Z is the ring of

all algebrai.c integers in C. Then Q(f) is a totally real finite extension
of Q, and Z(f) is the integer ring of Q(f). See [7] which contains the
case of general degree.

We consider the following two liftings from degree 1 to degree 2
for each even integer k >=4.

(A) The first lifting is the C-linear injection ]" M(F)M(F)
defined in [8] (cf. [6] [9]), which is given by the (generalized) Eisenstein
series. For each eigen modular form f in M(F) we have that" [f]
is an eigen modular form satisfying H(T, [f])=H(T, f)H(p-2T, f)
for all p and L(s, [f])--L(s, f)L(s-k+ 2, f).

(B) The second lifting is the C-linear injection a" M_(F)
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---M(F) constructed by Maass [10] [11] [12], Andrianov [2] and Zagier
[16], which was conjectured in [5]. For each eigen modular orm f
in M._(F) we have that" a(f) is an eigen modular form satisfying
H(T, ak(f))=(1-p-2T)(1-p-IT)H(T, j) for all p and L(s, ak(f))
=(s-k+2)(s--k+l)L(s, 2). Here we define a(E._)=f for the
Eisenstein series; see [5, 2.2(5)].

These liftings give the following decompositions of M(F)’M(F)
E(F2) S(F) M(F) M(F) E(F) E(F) S(F) SI(/’e).

The notation is as follows. We put E(F)= [E(F)] C. 9 and EL(F)
[S(F)], then we have E(F)= [M(F)]=E(F)@EL(F). We put

and S(F)=M(F) S(F) with the notation o [5, 4].. Then we have
M(F) a(M_.(F)) E(F)S(F). Here it holds that EI(F)
M(F) E(F) C. q. We denote by S(F) the orthogonal comple-

ment of S(F) in S(F) with respect to the Petersson inner product
II([6, Remark 3]), and we put M(F) E[(F) S (F).

We note o. -adic representations. We fix a prime number
Let f be an eigen modular orm in M(F) or even k4. Let
prime ideal of Q(f) dividing . We denote by Q(f) the :-adic comple-
tion o Q(f) and by Z(f) the integer ring o Q(f). Then, Deligne ([3]
and [4, Th. 6.1]) constructed a continuous l:-adic representation p(f)"
Gal(/Q)-GL(2, Z(f)) ( being the algebraic closure of Q in C) at-
tached to f such that p(f) is unramified outside o g and satisfies
det(1--p(f)(Frob(p))T)=H(T, f) or all prime numbers p:/:, where
Frob(p) denotes the Frobenius conjugacy class at p. We denote by

;" Gal(/Q)-GL(1, Z) the cyclotomic g-adic representation, where
Z is the ring o g-adic integers. Next, let F be an eigen modular
orm in M(F) or (even) k>__4. Let 1: be a prime ideal o Q(F) dividing. We denote by Q(F) the l:-adic completion o Q(F) and by Z(F) the
integer ring o Q(F). Then, it is conjectured that there exists a con-
tinuous -adic representation p(F)’Gal(Q/Q)-GL(4, Z(F)) such that
p(F) is unramified outside o and satisfies det(1--p(F)(Frob(p))T)
=H(T, F) or all prime numbers p:/:g. For litings (A)(B) such an
l:-adic representation is defined as ollows. (A) If F [f] with an eigen

f e M(F), then we put p(F)=p(f)z-(R)p(f). (B) I F=a(f)with
an eigen f e M._2(F1), then we put p(F) Z- Z-1 p(f). Note that
Z(F)--Z(f) in both cases. It might be natural to consider as p(F)"
Gal((t/Q)--CSp(4, Z(F)) by a slight modification.

2, Congruerceso We recall the definition o Hecke operators
following Andrianov [1, 1.3] (cf. [7]). For integers n>__l and
we put S()={M e M(2n, Z)IMJM=,(M)J with an integer ,(M)I}



142 N. KUROKAWA [Vol. 57 (A),

and Sk) {M e S()[(M) m}, where M denotes the transposed matrix

(0of M and J -E with the identity matrix E o size n. For

each subring R of C we denote by Lhn) (resp r.() the R-module gener-
ated by the double cosets FMF or all M e S() (resp. Sk)). Under
the usual multiplication, Lh) is an R-algebra (the abstract Hecke

T.() (the set ofalgebra of degree n over R). We put H)=,
"homogeneous" elements of L)), and we define a map ,’H)Z by

() X0, and,(0)=0. Then,isahomomorphismbe-r(X)=m if X e .,
tween (multiplicative) semi-groups. We denote b,y v=v" Lb)Endc
(M(F=)) the representation of the Hecke algebra Lb on M(F) defined
in Andrianov [1, (1.3.3)].

Let f e M(F) and g e M_(F=) be eigen modular forms for an
integer n&l and even integers kr0. In [6], we defined the eigen-
character a(f) (resp. a(g)) and a totally real finite number field Q(f)
(resp. Q(g)) attached to f (resp. g). We denote by Q(f, g)=f)Q(g)
the composite field and by Z(f, g) the integer ring of Q(f, g). For. an
ideal c of Z(f, g) we write (f)/(g) modc if (f)(r)(X))-,(X)/
2(g)(r2XX)) belongs to for all X e Hn), where={a/ilia e c, e Z(f, g),

((), c)=Z(f, g)}. (The case r=0 coincides with the definition in [7,
4].) For n= 1 and 2, this condition is equivalent to the following"

2(m, f)=m’2(m, g) mod for all integers ml. Moreover we can
restrict to m=p (resp. re=p, p) for n=l (resp. n=2) where p runs
over all prime numbers, and this is equivalent to the following con-
gruence between Hecke polynomials" H,(T, f)H(pr/T, g) mod c
for all prime numbers p. In fact, a0(2(p, f)_p,nf(p, g))T

1 if n=l,=(H(T, f)---H(p’T, g)-gX (l_p_,T) if n=2.
Eigenvalues of Hecke operators in [5] suggest, for example, the

following congruences" (-() ,([A]) mod 7, 2(0 ) ,2([A]) mod 11,
() rsf([]) mod 7.29. These coagruences supplement the follow-(Z0 )

ing congruence proved in Theorem 1 of [6]" 2(Z]))2([0]) mod 71
Which is equivalent to H(T, to’()--H(T, [0]) mod 71 for M1 p. They
seem to suggest to use a derivation 3=@z0 3 of M(F)=@0 M(F)
( graded C-algebra) such that G(M(F))cM+(F) and 3(M(F)z)
M(F)z where M(F)z denotes the graded Z-algebr @0 M(F)z con-

sisting of Siegel modular orms of degree n with Fourier coefficients
in Z. See Ramnujan [13], Serre [14] and Swinnerton-Dyer [15] 2or
the case n=l. We remark that similar congruences such as (Z0)
,() mod 5 are proved by reducing to the elliptic modular case; see
the next section (type (B)).. Liftings of congruences. We note three types of congruences
lited from degree 1 to degree 2.
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Theorem. Let k>=4 be an even integer. Then the following
hold.

(A) Let f and g be eigen modular forms in M(F) satisfying
2(f)--2(g) rood with an ideal of Z(f g). Then we have 2([f])--_--([g])
mod c.

(B) Le$ f e M._.(F) and g e M__(I’) be eigen modular forms
for an even integer r in 0=<r__<k-4. Assume tha 2(f)--,2(g) rood c

for an ideal c of Z(f g). Then we have (a(f))--,(a_(g)) rood c.

(C) (Mixed $ype) Le f e M(F) and g e M_.(F) be eigen modular
forms. Let r-O or 1. Assume tha$ 2(f)--,r2(E_.) mod c and 2(g)
----,2(E.__) rood for an ideal c of Z(f, g). Then we have 2(If])
----(a(g)) mod .

Proof. It is sufficient to show the congruences for Heeke poly-
nomials. Let p be a prime number and T an indeterminate.

(A) Hp(T, [f])--H(T, [g])rood c ollows rom H;(T, f)=_H(T, g)
modc.

(B) H(T, a(f))--H(pT, a_(g)) rood c ollows from H(T, f)
=__Hv(pT, g) modc.

(C) We have Hv(T, f)=_(1--pT)(1--p--T) mod c from 2(f)
----,2(E_) modc. Hence H,(T, [f])--(1--PrT)(1--p--T)(1--p/-T)
(1--p--T) mod c. We have Hv(T, g)--(1--pT)(1--p--T) rood c
rom 2(g)--,2(E._r_O rood . Hence Hv(T,a(g))--(1--prT)(1--p-T)
(1--p-T)(1--p--T) mod c. Since r--O or 1, we have Hv(T,[f])
----H(T, a(g)) rood c.

Alternatively we can use the equality of the following type (here
we note on (B) as an example)" _0 (2(P, a(f))--P2(P, a-(g)))T
--(1--P-T)(1--P-T)-(1-P-T)- ,_o (2(P, f)--P2(P, g))T.

Q.E.D.
Examples. From some congruences in the elliptic modular case

(see Ramanujan [13], Serre [14], and Swinnerton-Dyer [15]) we have
the following congruences. We use the notation o [5] or modular
orms.

(A) We note a typical example. From the Ramanujan’s congru-
ence (A,.)--(E0 mod 691, we have ([A.])--]() mod 691. This
is proved also s in [6].

(B) 2(As)----2(E) mod 43867 (Z0)--(0) mod 43867.
(z1)--(E.) mod 131.593](;.)--]() mod 131.593.
2(A.)--2(E) mod 657931 2(4)--2() mod 657931.

The above three congruences coincide with Theorem 2 of [6].
2(A)--2(E) mod 5 @2(Z0)=_v2(9) mod 5.
2(A)=v2(E) mod 5 2(X,)----2(9,0) mod 5.
2(A6)v2(E.) mod 5.72(X)v2() mod 5.7.
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(C) From (z/)----,(E0) mod 7 and (z/.)----,(E0) mod 7 we have
()----([z/]) mod 7. This congruence coincides with Theorem 3 of
[6]. We may consider 71L*(22, z/) as an interpretation for (A)
----,(E0) mod 7.

We may list some congruences according to the decomposition
IIM(F) E(F) E (F) S(F) IIS (F) .or weight k=12 and 20 as

2ollows.

/
/

.593(B) 691(A) 7,.2

71! 2.617(A)
154210205991661" (B)

/
/

//
Z,2 7(C) [AI] J20] 11" (C) (Z(>, 20(2)s

We remark that Q(z(o))=Q(zo))=Q(J63737521), and the two con-
gruences related to Z( for i=1 and 2 indicate that" N(2(m, ;d))--2(m,
.0))=0 mod 154210205991661 and N(,(m, ;o))-,(m, [/20]))--0 mod 11,
or all m>=l, where N" Q(/63737521)-Q denotes the norm map.
These congruences are proved as in [6]. On the other hand, they are
also reduced to the elliptic modular case by (B) with r=0 and (C) with
r= 1 respectively.

We note a congruence for Fourier coefficients. From [6] we see
that the Fourier coefficients 7a(T, [z/]) are integers for all T0, and
some numerical values (c. [9, Table I]) suggest that 7a(T, [z/:])--0
mod 23 or all T0. We remark that =23 is an exceptional prime
or /. of type (ii) in the sense of Serre [14] and Swinnerton-Dyer [15]
and 23 2k- 1 with k 12. Similar possible examples are g 31 (resp.
47) for k= 16 (resp. 24).
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